BackgroundHealth in early life is crucial for health later in life. Exposure to air pollution during embryonic and early-life development can result in placental epigenetic modification and foetus reprogramming, which can influence disease susceptibility in later life. Objectives: The aim of this paper was to investigate the placental adaptation in the level of global DNA methylation and differential gene expression in the methylation cycle in new-borns exposed to high fine particulate matter in the foetal stage.Study designThis is a nested case-control study. We enrolled pregnant healthy women attending prenatal care clinics in Tehran, Iran, who were residents of selected polluted and unpolluted regions, before the 14th week of pregnancy. We calculated the regional background levels of particle mass- particles with aerodynamics diameter smaller than 2.5 μm (PM2.5) and 10 μm (PM10)—of two regions of interest. At the time of delivery, placental tissue was taken for gene expression and DNA methylation analyses. We also recorded birth outcomes (the new-born’s sex, birth date, birth weight and length, head and chest circumference, gestational age, Apgar score, and level of neonatal care required).ResultsAs regards PM2.5 and PM10 concentrations in different time windows of pregnancy, there were significantly independent positive correlations between PM10 and PM2.5 in the first trimester of all subjects and placental global DNA methylation levels (p-value = 0.01, p-value = 0.03, respectively). The gene expression analysis showed there was significant correlation between S-adenosylmethionine expression and PM2.5 (p = 0.003) and PM10 levels in the first trimester (p = 0.03).ConclusionOur data showed prenatal exposures to air pollutants in the first trimester could influence placental adaptation by DNA methylation.
Quantifying gene expression in individual cells can substantially improve our understanding about complex genetically engineered cell products such as chimeric antigen receptor (CAR) T cells. Here we designed a single-cell RNA sequencing (scRNA-seq) approach to monitor the delivery of a CD19-CAR gene via lentiviral vectors (LVs), i.e., the conventional vesicular stomatitis virus (VSV)-LV and the CD8-targeted CD8-LV. LV-exposed human donor peripheral blood mononuclear cells (PBMCs) were evaluated for a panel of 400 immune response-related genes including LV-specific probes. The resulting data revealed a trimodal expression for the
CAR
and
CD8A
, demanding a careful distribution-based identification of CAR T cells and CD8+ lymphocytes in scRNA-seq analysis. The fraction of T cells expressing high
CAR
levels was in concordance with flow cytometry results. More than 97% of the cells hit by CD8-LV expressed the
CD8A
gene. Remarkably, the majority of the potential off-target cells were in fact on-target cells, resulting in a target cell selectivity of more than 99%. Beyond that, differential gene expression analysis revealed the upregulation of restriction factors in
CAR
-negative cells, thus explaining their protection from CAR gene transfer. In summary, we provide a workflow and subsetting approach for scRNA-seq enabling reliable distinction between transduced and untransduced cells during CAR T cell generation.
Background:Cancer immunotherapy is a promising strategy for cancer treatment. In this strategy, the immune system is triggered to destroy cancer cells. IL-2 is an important factor in passive cancer immunotherapy that helps modulating some important immune functions. One of the IL-2 limitations is low serum half-life; therefore, repetitive high doses of the injections are required to maintain effective concentrations. High-dose IL-2 therapy results in severe side effects; thus, improvement of its serum half-life would provide therapeutic benefits.Methods:We have investigated a strategy that is able to utilize an albumin-binding domain (ABD) from streptococcal protein G. In this strategy, the fusion protein ABD-rIL-2 binds to serum albumin, which results in improvement of the IL-2 serum half-life. PET26b+ plasmid was used as an expression vector, which encoded rIL-2 and ABD-rIL-2, both fused to pelB secretion signal under the control of the strong bacteriophage T7 promoter. The constructs were expressed in E. coli
Rosetta (DE3), and the recombinant proteins were purified from periplasmic fractions.Results:The analysis of in vitro bioactivity proved that the fusion of ABD to rIL-2 does not interfere with its bioactivity. ABD-rIL-2 fusion protein indicated higher serum half-life compared to rIL-2, when it was tested in the BALB/c mice.Conclusion:The current study provides an alternative strategy to extend the half-life and improve pharmacokinetic properties of rIL-2 without reducing its bioactivity in vitro.
Our results indicate an association between CTRP3 and knee OA. However, a much more robust study is required to draw that circulating CTRP3 could be a clinical marker for osteoarthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.