The present work summarizes the design process of a new continuous closed-loop hot transonic linear cascade. The facility features fully modular design which is intended to serve as a test bench for axial microturbomachinery components in independently varying Mach and Reynolds numbers ranges of 0-1.3 and 2 Â 10 4 -6 Â 10 5 , respectively. Moreover, for preserving heat transfer characteristics of the hot gas section, the gas to solid temperature ratio (up to 2) is retained. This operational environment has not been sufficiently addressed in prior art, although it is critical for the future development of ultra-efficient high power or thrust devices. In order to alleviate the dimension specific challenges associated with microturbomachinery, the facility is designed in a highly versatile manner and can easily accommodate different geometric configurations (pitch, 620 deg stagger angle, and 620 deg incidence angle), absence of any alterations to the test section. Owing to the quick swap design, the vane geometry can be easily replaced without manufacturing or re-assembly of other components. Flow periodicity is achieved by the inlet boundary layer suction and independently adjustable tailboard mechanisms. Enabling test-aided design capability for microgas turbine manufacturers, aerothermal performance of various advanced geometries can be assessed in engine relevant environments.
The present work summarizes the design process of a new continuous closed-loop hot transonic linear cascade. The facility features fully modular design which is intended to serve as a test bench for axial micro-turbomachinery components in independently varying Mach and Reynolds numbers ranges of 0 – 1.3 and 2·104 – 6·105 respectively. Moreover, for preserving heat transfer characteristics of the hot gas section, the gas to solid temperature ratio (up to 2) is retained. This operational environment has not been sufficiently addressed in prior art, although it is critical for the future development of ultra-efficient high power or thrust devices. In order to alleviate the dimension specific challenges associated with micro-turbomachinery, the facility is designed in a highly versatile manner, and can easily accommodate different geometric configurations (pitch, ±20° stagger angle, ±20° incidence angle), absent of any alterations to the test section. Owing to the quick swap design, the vane geometry can be easily replaced without manufacturing or re-assembly of other components. Flow periodicity is achieved by the inlet boundary layer suction and independently adjustable tailboard mechanisms. Enabling test-aided design capability for micro gas turbine manufacturers, aero-thermal performance of various advanced geometries can be assessed in engine relevant environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.