Most of the Earth's crust is created along 60,000 km of mid-ocean ridge system. Here, tectonic plates spread apart and, in doing so, gradually build up stress. This stress is released during rifting episodes, when bursts of magmatic activity lead to the injection of vertical sheets of magma -termed dykes -into the crust. Only 2% of the global mid-ocean ridge system is above sea level, so making direct observations of the rifting process is difficult. However, geodetic and seismic observations exist from spreading centres in Afar (East Africa) and Iceland that are exposed at the land surface. Rifting episodes are rare, but the few that have been well observed at these sites have operated with remarkably similar mechanisms. Specifically, magma is supplied to the crust in an intermittent manner, and is stored at multiple positions and depths. It then laterally intrudes in dykes within the brittle upper crust. Depending on the availability of magma, multiple magma centres can interact during one rifting episode. If we are to forecast large eruptions at spreading centres, rifting-cycle models will need to fully incorporate realistic crust and mantle properties, as well as the dynamic transport of magma.
[1] Magmatism strongly influences continental rift development, yet the mechanism, distribution, and timescales on which melt is emplaced and erupted through the shallow crust are not well characterized. The Main Ethiopian Rift (MER) has experienced significant volcanism, and the mantle beneath is characterized by high temperatures and partial melt. Despite its magma-rich geological record, only one eruption has been historically recorded, and no dedicated monitoring networks exist. Consequently, the present-day magmatic processes in the region remain poorly documented, and the associated hazards are neglected. We use satellitebased interferometric synthetic aperture radar observations to demonstrate that significant deformation has occurring at four volcanic edifices in the MER (Alutu, Corbetti, Bora, and Haledebi) from 1993 to 2010. This raises the number of volcanoes known to be deforming in East Africa beyond 12, comparable to many subduction arcs despite the smaller number of recorded eruptions. The largest displacements are at Alutu volcano, the site of a geothermal plant, which showed two pulses of rapid inflation (10-15 cm) in 2004 and 2008 separated by gradual subsidence. Our observations indicate a shallow (<10 km), frequently replenished zone of magma storage associated with volcanic edifices and add to the growing body of observations that indicate shallow magmatic processes operating on a decadal timescale are ubiquitous throughout the East African Rift. In the absence of detailed historical records of volcanic activity, satellitebased observations of monitoring parameters, such as deformation, could play an important role in assessing volcanic hazard.
Continental breakup occurs through repeated episodes of mechanical stretching and dike injection within discrete, narrow rift segments. However, the time and length scales of the dike intrusions, along with the source regions of melt within continental and oceanic rifts, are poorly constrained. We present measurements of spatial and temporal variability in deformation from the currently active 60-km-long Dabbahu segment of the Red Sea rift in Afar, using satellite radar, global positioning system, and seismicity data sets, that capture emplacement of two ~10-km-long, ~1-2-m-wide dike intrusions in June and July 2006. Our observations show that the majority of strain is accommodated by dikes that propagate laterally over ~4-5 h time scales along the rift axis and are sourced from a reservoir in the middle to lower crust, or upper mantle, beneath the center of the rift segment. New intrusions during the ongoing rifting episode in Afar show that the injection of lateral dikes fed from magma reservoirs beneath rift segment centers is a key component in creating and maintaining regular along-axis rift segmentation during the fi nal stages of continental breakup. Our observations also provide evidence that the focused magmatic accretion at segment centers observed in slow-spreading mid-ocean ridges occurs prior to the onset of seafl oor spreading.
SUMMARY A 60‐km‐long dyke intruded the Dabbahu segment of the Nubia–Arabia Plate boundary (Afar, Ethiopia) in 2005 September, marking the beginning of an ongoing rifting episode. We have monitored the continuing activity using Satellite Radar Interferometry (InSAR) and with data from Global Positioning System (GPS) instruments and seismometers deployed around the rift in response to the initial intrusion. These data show that a sequence of new dyke intrusions has reintruded the central and southern section of the Dabbahu segment. The first was in 2006 June and seven new dykes were emplaced by the end of 2007. Modelling of InSAR data indicates that the dykes were between 0.5 and 2 m wide, up to ∼10 km long and confined to the upper 10 km of crust. An intrusion in 2007 August was associated with a 5‐km‐long basaltic fissural eruption. During the new dyke injections, InSAR and GPS data show no subsidence at either of the volcanoes at the northern end of the segment, which partly fed the 2005 September dyke. Seismicity data imply that the dykes were probably fed from a source near the Ado'Ale Silicic Complex at the centre of the segment, but the lack of significant subsidence there implies that the source is very deep, or that there was minimal deflation at shallow magma sources. The new dykes are concentrated in an area where the 2005 dyke did not produce significant opening, implying that residual tensile tectonic stresses are higher in this location and are focusing the later intrusions. The sequence of dyke intrusions observed so far is similar to those seen in Iceland during the Krafla rifting episode, which lasted 9 yr from 1975 to 1984. It is likely that, with a continued magma supply, dykes will continue to be intruded until the tectonic stress is fully relieved. As observed at Krafla, eruptions are likely to become more common before the rifting episode is concluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.