Purpose: To investigate the relationships between white matter hyperintensities (WMH) and hippocampal volume and their influence on brain networks by using resting-state functional connectivity (rs-fc) magnetic resonance (MR) according to their localization. Methods: In this exploratory cross-sectional study, 38 subjects from the public ''Leipzig Study for Mind/Body/ Emotion Interactions'' (LEMON) data set were selected. Morphometric analyses of both WMH burden and the total hippocampal relative volume (tHRV) were performed for each subject with two automated software. The WMH were then categorized as total (tWMH), periventricular (pvWMH), deep (dWMH), and juxtacortical (jcWMH). Spearman's correlation analyses were performed to evaluate the relationships between the following variables: age, tWMH, pvWMH, dWMH, jcWMH, and tHRV. Subsequently, three different rs-fc MR group analyses were performed using a multiple regression model that included age, pvWMH, dWMH, and jcWMH as second-level covariates. The graph theoretical analysis was applied to evaluate the effects of pvWMH (analysis 1), jcWMH (analysis 2), and dWMH (analysis 3). Results: Spearman's correlation analysis revealed several statistically significant (p < 0.05) positive and negative correlations, in particular positive between age and tWMH, and negative between dWMH and tHRV. rs-fc MR analysis 1 and 2 did not reveal statistically significant results; analysis 3 revealed that dWMH influenced network properties of several cerebral regions, in particular global and local efficiency of both the hippocampi. Conclusion: The localization of WMH influences brain activity in healthy subjects. In particular, dWMH are inversely correlated with tHRV and influence several properties of different cerebral areas, included both the hippocampi.
The atherosclerotic plaque Cardiovascular disease: a global threatAtherosclerosis is an inflammatory vascular disease characterized by metabolic alterations which, via the formation of vascular plaques, can lead to severe cardiovascular complications, most importantly in the form of ischemic heart disease and cerebrovascular disease. In developed countries, carotid artery disease affects 75% of men and 62% of women in a population of over 65 years of age.Despite reduction of the incidence and mortality rates for cardiovascular disease in Western countries over the course of the 20th century, stroke still ranks as the second most common cause of death worldwide; up to 18-25% of all strokes ensue as a complication of carotid atherosclerotic disease (1-5).Therefore, in designing an effective stroke prevention
Purpose: Recently, many academic research groups have focused their attention on changes in human brain networks related to several kinds of pathologies and diseases, generating the new discipline termed "Network Medicine". Purpose of this paper is to investigate the ability of the Network Medicine to give deeper insights in the functionality of brain activity. Material and Methods:In the proposed study of Tourette syndrome, we have investigated with the functional magnetic resonance imaging the possibility that the mechanisms associated with the monitoring and internal control of movements were compromised in individuals with Tourette syndrome; we enrolled 20 Tourette Syndrome patients in comparison with a healthy Controls group of 15 subjects matching for age and sex distribution. We proposed, for the fMRI analysis, a novel task based on the execution of switching between complex movements on demand. Results:The elementary activation model found that the effort related to the task in comparing Tourettic vs Controls mainly concerns the areas of the Gyrus of the Cingulum, the precuneus and the thalamic area of the ventral-lateral nucleus. In particular, the BA11 plays an essential role in the Tourette Patients related to the continue tentative to correct the TIC. Considering the status of the pilot study of this work, we remark the power of proposed methods to investigate the complex interaction of the brain networks. Conclusion:Alteration in brain activity for a population of Tourette Syndrome patients is evaluable by the use of complex indexes, results confirm the literature about this pathology and these medical physics methods can be applied to all neurological diseases investigation by opportune task-driven experiments or by resting state fc-MRI experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.