From birth to the time after weaning the gastrointestinal microbiota of calves must develop into a stable, autochthonous community accompanied by pivotal changes of anatomy and physiology of the gastrointestinal tract. The aim of this pilot study was to examine the fecal microbiota of six Simmental dairy calves to investigate time-dependent dynamics of the microbial community. Calves were followed up from birth until after weaning according to characteristic timepoints during physiological development of the gastrointestinal tract. Pyrosequencing of 16S rRNA gene amplicons from 35 samples yielded 253,528 reads clustering into 5410 operational taxonomic units based on 0.03 16S rRNA distance. Operational taxonomic units were assigned to 296 genera and 17 phyla with Bacteroidetes, Firmicutes, and Proteobacteria being most abundant. An age-dependent increasing diversity and species richness was observed. Highest similarities between fecal microbial communities were found around weaning compared with timepoints from birth to the middle of the milk feeding period. Principal coordinate analysis revealed a high variance particularly in samples taken at the middle of the milk feeding period (at the age of approximately 40 days) compared to earlier timepoints, confirming a unique individual development of the fecal microbiota of each calf. This study provides first deep insights into the composition of the fecal microbiota of Simmental dairy calves and might be a basis for future more detailed studies.
Many different Gram-negative bacteria have been shown to be present on cheese rinds. Their contribution to cheese ripening is however, only partially understood until now. Here, cheese rind samples were taken from Vorarlberger Bergkäse (VB), an artisanal hard washed-rind cheese from Austria. Ripening cellars of two cheese production facilities in Austria were sampled at the day of production and after 14, 30, 90 and 160days of ripening. To obtain insights into the possible contribution of Advenella, Psychrobacter, and Psychroflexus to cheese ripening, we sequenced and analyzed the genomes of one strain of each genus isolated from VB cheese rinds. Additionally, quantitative PCRs (qPCRs) were performed to follow the abundance of Advenella, Psychrobacter, and Psychroflexus on VB rinds during ripening in both facilities. qPCR results showed that Psychrobacter was most abundant on cheese rinds and the abundance of Advenella decreased throughout the first month of ripening and increased significantly after 30days of ripening (p<0.01). Psychrobacter and Psychroflexus increased significantly during the first 30 ripening days (p<0.01), and decreased to their initial abundance during the rest of the ripening time (p<0.05). Genome sequencing resulted in 17 to 27 contigs with assembly sizes of 2.7 Mbp for Psychroflexus, 3 Mbp for Psychrobacter, and 4.3 Mbp for Advenella. Our results reveal that each genome harbors enzymes shown to be important for cheese ripening in other bacteria such as: Cystathionine/Methionine beta or gamma-lyases, many proteases and peptidases (including proline iminopeptidases), aminotransferases, and lipases. Thus, all three isolates have the potential to contribute positively to cheese ripening. In conclusion, the three species quantified were stable community members throughout the ripening process and their abundance on cheese rinds together with the results from genome sequencing suggest an important contribution of these bacteria to cheese ripening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.