Earth Observation (EO) data can be leveraged to estimate environmental variables that influence the transmission cycle of the pathogens that lead to mosquito-borne diseases (MBDs). The aim of this scoping review is to examine the state-of-the-art and identify knowledge gaps on the latest methods that used satellite EO data in their epidemiological models focusing on malaria, dengue and West Nile Virus (WNV). In total, 43 scientific papers met the inclusion criteria and were considered in this review. Researchers have examined a wide variety of methodologies ranging from statistical to machine learning algorithms. A number of studies used models and EO data that seemed promising and claimed to be easily replicated in different geographic contexts, enabling the realization of systems on regional and national scales. The need has emerged to leverage furthermore new powerful modeling approaches, like artificial intelligence and ensemble modeling and explore new and enhanced EO sensors towards the analysis of big satellite data, in order to develop accurate epidemiological models and contribute to the reduction of the burden of MBDs.
Mosquito-Borne Diseases (MBDs) are known to be more prevalent in the tropics, and yet, in the last two decades, they are spreading to many other countries, especially in Europe. The set (volume) of environmental, meteorological and other spatio-temporally variable parameters affecting mosquito abundance makes the modeling and prediction tasks quite challenging. Up to now, mosquito abundance prediction problems were addressed with ad-hoc area-specific and genus-tailored approaches. We propose and develop MAMOTH, a generic and accurate Machine Learning model that predicts mosquito abundances for the upcoming period (the Mean Absolute Error of the predictions do not deviate more than 14%). The designed model relies on satellite Earth Observation and other in-situ geo-spatial data to tackle the problem. MAMOTH is not site- nor mosquito genus-dependent; thus, it can be easily replicated and applied to multiple cases without any special parametrization. The model was applied to different mosquito genus and species Culex spp. as potential vectors for West Nile Virus, Anopheles spp. for Malaria and Aedes albopictus for Zika/Chikungunya/Dengue) and in different areas of interest (Italy, Serbia, France, Germany). The results show that the model performs accurately and consistently for all case studies. Additionally, the evaluation of different cases, with the model using the same principles, provides an opportunity for multi-case and multi-scope comparative studies.
<p>The aim of this study is the development of an operational Early Warning System (EWS) that will utilize new and enhanced satellite Earth Observation (EO) sensors with the purpose of forecasting and risk mapping the West Nile Virus (WNV) outbreaks. Satellite EO data were leveraged to estimate environmental variables that influence the transmission cycle of the pathogen that leads to WNV, a mosquito-borne disease (MBD). The system was trained with epidemiological and entomological data from the region of Central Macedonia, the most epidemic-prone region in Greece regarding the WNV. The satellite derived environmental parameters of the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), the Land Surface Temperature (LST), precipitation data as well as proximity to water bodies were coupled with meteorological data and were used as explanatory variables for the models. The management and analysis of the big satellite data was conducted with the Open Data Cube (ODC), providing an open and freely accessible exploitation architecture. Statistical and machine learning algorithms were used for short-term forecast, while dynamical models were utilized for the seasonal forecast.The system explores the analysis of big satellite data and proves its scalability by replicating the same models in different geographic regions; e.g the northeastern Italian region of Veneto. This EWS will be used as a tool for helping local decision-makers to improve health system responses, take preventive measures in order to curtail the spread of WNV in Europe and address the relevant priorities of the Sustainable Development Goals (SDGs) such as good health and well-being (SDG 3) and climate action (SDG 13).</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.