BackgroundIn mammals, the IGF-1 pathway affects the phenotype of aging. Since the function of the immune system is modulated by IGF-1, it is plausible that immunosenescence might in part result from altered control by this pathway. We therefore examined whether the expression of IGF-1R, FOXO1, and FOXO3a in peripheral blood mononuclear cells (PBMC) changes with age and if this might be due to changes in the expression of select miRNAs.MethodsThe expression of IGF-1R, FOXO1, FOXO3a, as well as of miR-9, miR-96, miR-99a, miR-132, miR-145, and miR-182 was examined in PBMC of young (27.8 ± 3.7 years), elderly (65.6 ± 3.4 years), and long-lived (94.0 ± 3.7 years) Polish Caucasians using real-time PCR. mRNA/miRNA interactions were studied in HEK 293 cells using luciferase-expressing pmirGLO reporter vector.ResultsThe median expression of IGF-1R decreased with age (p < 0.000001), as did the expression of FOXO1 (p < 0.000001), while the expression of FOXO3a remained stable. We also found an age-associated increase of the median expression of miR-96 (p = 0.002), miR-145 (p = 0.024) and miR-9 (p = 0.026), decrease of the expression of miR-99a (p = 0.037), and no changes regarding miR-132 and miR-182. Functional studies revealed that miR-96 and miR-182 interacted with human IGF-1R mRNA, and that miR-145 and miR-132 interacted with human FOXO1 mRNA.ConclusionsThe age-associated higher expression of miR-96 and miR-145 might contribute to the lower expression of IGF-1R while the higher expression of miR-96, miR-145 and miR-9 might contribute to the lower expression of FOXO1 in peripheral blood mononuclear cells of aging humans. Sustained expression/function of FOXO3a but not of the other two genes might be important for the maintenance of the immune system function in these individuals.
Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30–60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.