People's fear and anxiety about doing math-over and above actual math ability-can be an impediment to their math achievement. We show that when the math-anxious individuals are female elementary school teachers, their math anxiety carries negative consequences for the math achievement of their female students. Early elementary school teachers in the United States are almost exclusively female (>90%), and we provide evidence that these female teachers' anxieties relate to girls' math achievement via girls' beliefs about who is good at math. First-and secondgrade female teachers completed measures of math anxiety. The math achievement of the students in these teachers' classrooms was also assessed. There was no relation between a teacher's math anxiety and her students' math achievement at the beginning of the school year. By the school year's end, however, the more anxious teachers were about math, the more likely girls (but not boys) were to endorse the commonly held stereotype that "boys are good at math, and girls are good at reading" and the lower these girls' math achievement. Indeed, by the end of the school year, girls who endorsed this stereotype had significantly worse math achievement than girls who did not and than boys overall. In early elementary school, where the teachers are almost all female, teachers' math anxiety carries consequences for girls' math achievement by influencing girls' beliefs about who is good at math. education | mathematics | gender | stereotype | modeling A t most US colleges and universities, the mathematics requirements for students majoring in elementary education are minimal (1). As a result, students can successfully pursue a career as an elementary school teacher even if they have a propensity to avoid math. Interestingly, elementary education majors are largely female and have the highest levels of math anxiety of any college major (2). Math anxiety manifests itself as an unpleasant emotional response to math or the prospect of doing math and is more common in women than in men (2). Because of these negative reactions, people high in math anxiety tend to stay away from math courses and math-related career paths † (3-5). Not only do math-anxious people avoid math but they also perform more poorly than their abilities would suggest when they are exposed to math. This is because math anxiety is not simply a proxy for poor math ability. Rather, the fears that math-anxious individuals experience when they are called on to do mathwhether it is working through a problem at the chalk board as an entire class looks on, taking a math test, or even calculating a restaurant bill-prevent them from using the math knowledge they possess to show what they know (3). When worries and selfdoubt occur, thinking and reasoning can be compromised (6).Math anxiety has been recognized as an impediment to math achievement (7). Yet, fears and anxiety about math may have more widespread consequences than merely having an impact on the achievement of math-anxious individuals themselves. If people wh...
Girls tend to have more negative math attitudes, including gender stereotypes, anxieties, and self-concepts, than boys. These attitudes play a critical role in math performance, math course-taking, and the pursuit of mathrelated career paths. We review existing research, primarily from U.S. samples, showing that parents' and teachers' expectancies for children's math competence are often gender-biased and can influence children's math attitudes and performance. We then propose three new directions for future research on the social transmission of gender-related math attitudes. First, parents' and teachers' own math anxieties and their beliefs about whether math ability is a stable trait may prove to be significant influences on children's math attitudes. Second, a developmental perspective that investigates math attitudes at younger ages and in relation to other aspects of gender development, such as gender rigidity, may yield new insights into the development of math attitudes. Third, investigating the specific behaviors and mannerisms that form the causal links between parents' and teachers' beliefs and children's math attitudes may lead to effective interventions to improve children's math attitudes from a young age. Such work will not only further our understanding of the relations between attitudes and performance, but will lead to the development of practical interventions for the home and classroom that ensure that all students are provided with opportunities to excel in math.
In laboratory studies, praising children’s effort encourages them to adopt incremental motivational frameworks—they believe ability is malleable, attribute success to hard work, enjoy challenges, and generate strategies for improvement. In contrast, praising children’s inherent abilities encourages them to adopt fixed-ability frameworks. Does the praise parents spontaneously give children at home show the same effects? Although parents’ early praise of inherent characteristics was not associated with children’s later fixed-ability frameworks, parents’ praise of children’s effort at 14-38 months (N=53) did predict incremental frameworks at 7-8 years, suggesting that causal mechanisms identified in experimental work may be operating in home environments.
Spatial skill is highly related to success in math and science (e.g., Casey, Nuttall, Pezaris, & Benbow, 1995). However, little work has investigated the cognitive pathways by which the relation between spatial skill and math achievement emerges. We hypothesized that spatial skill plays a crucial role in the development of numerical reasoning by helping children to create a spatially meaningful, powerful numerical representation-the linear number line. In turn, a strong linear number representation improves other aspects of numerical knowledge such as arithmetic estimation. We tested this hypothesis using 2 longitudinal data sets. First, we found that children's spatial skill (i.e., mental transformation ability) at the beginning of 1st and 2nd grades predicted improvement in linear number line knowledge over the course of the school year. Second, we found that children's spatial skill at age 5 years predicted their performance on an approximate symbolic calculation task at age 8 and that this relation was mediated by children's linear number line knowledge at age 6. The results are consistent with the hypothesis that spatial skill can improve children's development of numerical knowledge by helping them to acquire a linear spatial representation of numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.