We use a custom shear cell coupled to an optical microscope to investigate at the particle level the yielding transition in concentrated emulsions subjected to an oscillatory shear deformation. By performing experiments lasting thousands of cycles on samples at several volume fractions and for a variety of applied strain amplitudes, we obtain a comprehensive, microscopic picture of the yielding transition. We find that irreversible particle motion sharply increases beyond a volume-fraction dependent critical strain, which is found to be in close agreement with the strain beyond which the stress-strain relation probed in rheology experiments significantly departs from linearity. The shear-induced dynamics are very heterogenous: quiescent particles coexist with two distinct populations of mobile and 'supermobile' particles. Dynamic activity exhibits spatial and temporal correlations, with rearrangements events organized in bursts of motion affecting localized regions of the sample. Analogies with other sheared soft materials and with recent work on the transition to irreversibility in sheared complex fluids are briefly discussed.
All scorpions have two mid-ventral organs called pectines. Each pecten has thousands of pore-tipped sensilla sensitive to a variety of volatile organic and water-based stimulants. However, it was previously unknown whether individual sensilla were functionally identical or different. The information enhancement hypothesis predicts that all sensilla have similar chemosensitivities such that each is a unit of a parallel processing system. The information segmentation hypothesis states that sensilla differ in their chemosensitivities, a functional arrangement akin to the glomeruli-specific chemical detection system in the moth or human olfactory sense. In this study, we tested these hypotheses by extracellularly tip-recording sensillar responses to three aqueous tastants: 0.01 M KCl, 0.1 M citric acid, and 40% ethanol by volume. We isolated stimulation to one sensillum at a time and compared the chemoresponses. Sensilla appeared to respond similarly to the same stimulant (i.e., sensillar tip-recordings revealed activity of the same cell types), although sometimes a few sensilla responded with higher spike rates than the others. We conclude that our data primarily support the information enhancement hypothesis but for future tests of sensillar function we suggest a new hybrid model, which proposes that a few specialized sensilla exist among a mostly uniform field of identical sensilla.
A silicone-based elastomer filled with vinyl-silane treated aluminum hydroxide was used to replace conventional polyurethane-based adhesive to provide a flame-retardant adhesive for plywood. The shear strength and fire performance of such a silicone-based (SI) adhesive glued plywood (SI/plywood) were investigated and compared to those of the polyurethane-based (PU) adhesive glued plywood (PU/plywood). The shear strength of the SI/plywood [(0.92 ± 0.09) MPa] was about 63% lower than that of the PU/plywood at room temperature, but it was less sensitive to water (62% reduction for the PU/plywood and 30% reduction for the SI/plywood after hot-water immersion at 63 °C for 3 h). The fire performance of plywood was assessed by a simulated match-flame ignition test (Mydrin test), lateral ignition and flame spread test, cone calorimetry, and thermocouple measurements. With a higher burn-though resistance and thermal barrier efficiency, and lower flame spread and heat release rate, the SI/plywood exhibited a superior fire-resistance and reaction-to-fire performance and improved fire-resistance as compared to the PU/plywood. The SI adhesive generated an inorganic protective layer on the sample surface that visibly suppressed glowing and smoldering of the plywood during combustion. The SI adhesive was also combined and reinforced with cellulosic fabric (CF) or glass fabric (GF) to prepare composite plywood (SI/CF/plywood and SI/GF/plywood) with improved fire performance. The cone calorimetry and thermocouple measurements indicated that the use of CF or GF in SI/CF/plywood and SI/GF/plywood, respectively, suppressed the delamination and cracking of the composite plywood and promoted the formation of an effective thermal barrier during smoldering and flaming combustion. Particularly, the SI/GF/plywood exhibited the most effective fire barrier with no crack formation, and the lowest heat release rate among the plywood types investigated in this study.
All scorpions possess jointed, ventral appendages called pectines. These organs have chemosensory, peg-shaped sensilla that detect substrate-borne chemicals. Previous physiological studies show that neurons within peg sensilla respond to an assortment of volatile organic chemical stimulants blown across the sensillar opening. We developed an improved method of chemical stimulant delivery called the mineral oil flood technique to further investigate the neural circuitry of scorpion pectines. The new mineral oil flood technique allows us to deliver chemical stimulants directly to individual sensilla by introducing a polar, liquid substance under non-polar mineral oil. Unlike previous methods of stimulant delivery, the mineral oil flood technique allows for precise control over the duration of direct contact between a liquid stimulant of known concentration and a sensillum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.