Endoplasmic reticulum (ER) stress from accumulated misfolded proteins in the ER can activate the unfolded protein response (UPR). The UPR acts either to restore proteostasis or to activate cell death pathways if the stress cannot be resolved. The key downstream effectors in these pathways have been studied extensively. However, in comparison, stressor-specific key mediators are not as well characterized. In this study, we sought to identify and compare the genes that are necessary for cell death induced by three classic pharmacological ER stressors with different mechanisms of action: thapsigargin, tunicamycin, and brefeldin A. We conducted genome-wide CRISPR/Cas9-based loss-of-function screens against these agents in HAP1 cells, which are a near-haploid cell line. Our screens confirmed that MFSD2A and ARF4, which were identified in previous screens, are necessary for tunicamycin- and brefeldin A-induced cytotoxicity, respectively. We identified a novel gene, SEC24A, as an essential gene for thapsigargin-induced cytotoxicity in HAP1 cells. Further experiments showed that the ability of SEC24A to facilitate ER stress-induced cell death is specific to thapsigargin and that SEC24A acts upstream of the UPR. These findings show that the genes required for ER stress-induced cell death are specific to the agent used to induce ER stress and that the resident ER cargo receptor protein SEC24A is an essential mediator of thapsigargin-induced UPR and cell death.
Animals use a stereotypical set of developmental genes to build body architectures of varying sizes and organizational complexity. Some genes are critical to developmental patterning, while other genes are important to physiological control of growth. However, growth regulator genes may not be as important in small-bodied "micro-metazoans" such as nematodes. Nematodes use a simplified developmental strategy of lineage-based cell fate specifications to produce an adult bilaterian body composed of a few hundreds of cells. Nematodes also lost the MYC proto-oncogenic regulator of cell proliferation. To identify additional regulators of cell proliferation that were lost with MYC, we computationally screened and determined 839 high-confidence genes that are conserved in bilaterians/lost in nematodes (CIBLIN genes). We find that 30 % of all CIBLIN genes encode transcriptional regulators of cell proliferation, epithelial-to-mesenchyme transitions, and other processes. Over 50 % of CIBLIN genes are unnamed genes in Drosophila, suggesting that there are many understudied genes. Interestingly, CIBLIN genes include many Myc synthetic lethal (MycSL) hits from recent screens. CIBLIN genes include key regulators of heparan sulfate proteoglycan (HSPG) sulfation patterns, and lysyl oxidases involved in cross-linking and modification of the extracellular matrix (ECM). These genes and others suggest the CIBLIN repertoire services critical functions in ECM remodeling and cell migration in large-bodied bilaterians. Correspondingly, CIBLIN genes are co-expressed with Myc in cancer transcriptomes, and include a preponderance of known determinants of cancer progression and tumor aggression. We propose that CIBLIN gene research can improve our understanding of regulatory control of cellular growth in metazoans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.