Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover “hidden mutations” such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5′ exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5′-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading.
Familial digital arthropathy-brachydactyly (FDAB) is a dominantly inherited condition that is characterized by aggressive osteoarthropathy of the fingers and toes and consequent shortening of the middle and distal phalanges. Here we show in three unrelated families that FDAB is caused by mutations encoding p.Gly270Val, p.Arg271Pro and p.Phe273Leu substitutions in the intracellular ankyrin-repeat domain of the cation channel TRPV4. Functional testing of mutant TRPV4 in HEK-293 cells showed that the mutant proteins have poor cell-surface localization. Calcium influx in response to the synthetic TRPV4 agonists GSK1016790A and 4αPDD was significantly reduced, and mutant channels did not respond to hypotonic stress. Others have shown that gain-of-function TRPV4 mutations cause skeletal dysplasias and peripheral neuropathies. Our data indicate that TRPV4 mutations that reduce channel activity cause a third phenotype, inherited osteoarthropathy, and show the importance of TRPV4 activity in articular cartilage homeostasis. Our data raise the possibility that TRPV4 may also have a role in age- or injury-related osteoarthritis.
Townes-Brocks syndrome (TBS) is an autosomal dominant malformation syndrome characterized by renal, anal, ear, and thumb anomalies caused by SALL1 mutations. To date, 36 SALL1 mutations have been described in TBS patients. All but three of those, namely p.R276X, p.S372X, and c.1404dupG, have been found only in single families thereby preventing phenotype-genotype correlations. Here we present 20 novel mutations (12 short deletions, five short duplications, three nonsense mutations) in 20 unrelated families. We delineate the phenotypes and report previously unknown ocular manifestations, i.e. congenital cataracts with unilateral microphthalmia. We show that 46 out of the now 56 SALL1 mutations are located between the coding regions for the glutamine-rich domain mediating SALL protein interactions and 65 bp 3' of the coding region for the first double zinc finger domain, narrowing the SALL1 mutational hotspot region to a stretch of 802 bp within exon 2. Of note, only two SALL1 mutations would result in truncated proteins without the glutamine-rich domain, one of which is reported here. The latter is associated with anal, ear, hand, and renal manifestations, indicating that the glutamine-rich domain is not required for typical TBS.
Townes-Brocks syndrome is an autosomal dominantly inherited disorder, which comprises multiple birth defects including renal, ear, anal, and limb malformations. TBS has been shown to result from mutations in SALL1, a human gene related to the developmental regulator SAL of Drosophila melanogaster. The SALL1 gene product is a zinc finger protein thought to act as a transcription factor. It contains four highly conserved, evenly distributed C2H2 double zinc finger domains. A single C2H2 motif is attached to the second domain, and at the amino terminus SALL1 contains a C2HC motif. Most mutations causing TBS are clustered in the N-terminal third of the SALL1 coding region and result in the production of truncated proteins containing only one or none of the C2H2 domains and the N-terminal transcriptional repressor domain of SALL1. Twenty-three SALL1 mutations were reported prior to this work, 22 of which are located in exon 2, 5' of the second double zinc finger-encoding region. Here we present 12 novel mutations in SALL1 associated with Townes-Brocks syndrome in 13 unrelated families. These include three nonsense mutations, three short insertions and six short deletions. Thus the number of SALL1 mutations increases to 35. Rare phenotypical features among mutation positive patients include hypothyroidism, vaginal aplasia with bifid uterus, cryptorchidism, bifid scrotum without hypospadia scrotalis, unilateral chorioretinal coloboma with loss of vision, dorsal hypoplasia of the corpus callosum, and umbilical hernia.
The detection rate for mutations in SLC3A1 and SLC7A9 in children was 54% in the SLC3A1 gene for type I chromosomes and 25% in the SLC7A9 gene for non-type I chromosomes. It was lower than that in 10 further patients with an unclassified cystinuria, although the clinical characterization in the first group was more stringent; additionally, different spectrums of mutations were observed. The lack of detectable mutations in many patients indicates the possibility of other yet unidentified genes involved in cystinuria. We could not correlate the severity of the disease to the type of cystinuria in the pediatric patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.