The gene-sized macronuclear DNA of the hypotrichous ciliate Stylonychia lemnae contains two size classes of DNA molecules (1.85 and 1.73 kbp) coding for alpha-tubulin. Each macronucleus contains about 55000 copies of the 1.85 kbp molecules and about 17000 copies of the 1.73 kbp DNA molecules. Five macronuclear molecules of these sequences were cloned and sequenced, one, from the 1.85 kbp size class in its entirety. The 5 sequences fell into two classes suggesting that Stylonychia lemnae contains at least two different alpha-tubulin genes. All 5 clones show the codon TAA in the same nucleotide positions of the coding region. In this position the TAA codon cannot function as a translational stop codon and we suggest that this codon codes for the amino acid glutamine. The nucleotide sequence of the coding region as well as the encoded amino acid sequence is highly conserved compared to alpha-tubulin genes from vertebrates. The noncoding regions show several putative transcription-regulatory sequences as well as sequences presumably functioning as replication origins.
Macronuclear DNA of the hypotrichous ciliate Stylonychia lemnae contains two size-classes of molecules coding for alpha-tubulin. Analysis of their coding regions demonstrates that these two size-classes represent two different functional alpha-tubulin genes, alpha 1 and alpha 2; a comparison of these regions shows a 97% homology in their nucleotide sequence and 98.5% in their amino acid sequence. S1-mapping experiments indicate that both alpha 1- and alpha 2-tubulin genes are transcribed. The 5' and 3' noncoding regions flanking the alpha 1- and alpha 2-tubulin genes differ in both length and nucleotide sequence within one strain. When different strains are compared, however, identical non-coding regions and slightly varying coding regions can be found in DNA molecules containing the alpha 1-tubulin genes.
The macronucleus of the hypotrichous ciliate Stylonychia lemnae contains a 1218 bp long DNA molecule which becomes highly amplified during vegetative growth due to a continuous overreplication over a long time range. The region which is located upstream the open reading frame of the overamplified 1.2kbp Stylonychia DNA molecule enabled plasmids containing an inefficiently transcribed thymidine kinase gene to persist and amplify upon transfection into mouse L fibroblasts under selective conditions. This region contains long AT-rich stretches. The AT-rich sequences interact with a previously characterized HMG-I like protein from mouse Ehrlich ascites tumour cells. A binding activity for AT-rich stretches could also be identified in macronuclear extracts from Stylonychia lemnae. We suggest a common mechanism for overamplification in Stylonychia macronuclei during vegetative growth and amplification of plasmid DNA in heterologous mouse cells under the influence of a common element.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.