The issue of G protein-coupled receptor (GPCR) oligomer status has not been resolved. Although many studies have provided evidence in favor of receptor-receptor interactions, there is no consensus as to the exact oligomer size of class A GPCRs. Previous studies have reported monomers, dimers, tetramers, and higher-order oligomers. In the present study, this issue was examined using fluorescence correlation spectroscopy (FCS) with photon counting histogram (PCH) analysis, a sensitive method for monitoring diffusion and oligomer size of plasma membrane proteins. Six different class A GPCRs were selected from the serotonin (5-HT 2A ), adrenergic (a 1b -AR and b 2 -AR), muscarinic (M 1 and M 2 ), and dopamine (D 1 ) receptor families. Each GPCR was C-terminally labeled with green fluorescent protein (GFP) or yellow fluorescent protein (YFP) and expressed in human embryonic kidney 293 cells. FCS provided plasma membrane diffusion coefficients on the order of 7.5 Â 10 29 cm 2 /s. PCH molecular brightness analysis was used to determine the GPCR oligomer size. Known monomeric (CD-86) and dimeric (CD-28) receptors with GFP and YFP tags were used as controls to determine the molecular brightness of monomers and dimers. PCH analysis of fluorescence-tagged GPCRs revealed molecular brightness values that were twice the monomeric controls and similar to the dimeric controls. Reduced x 2 analyses of the PCH data best fit a model for a homogeneous population of homodimers, without tetramers or higher-order oligomers. The homodimer configuration was unaltered by agonist treatment and was stable over a 10-fold range of receptor expression level. The results of this study demonstrate that biogenic amine receptors freely diffusing within the plasma membrane are predominantly homodimers.
Rat and human serotonin 5-HT 2C receptor isoforms were evaluated for agonist-independent activation of inositol phosphate production in COS-7 cells. The nonedited isoform (5-HT 2C-INI ) displayed the greatest basal activity, stimulating inositol phosphate production fourfold over the fully edited isoform (5-HT 2C-VGV ). All of the other isoforms tested displayed intermediate levels of basal activity. Decreasing receptor expression levels by 50% produced a parallel decrease in basal activity. 5-HT stimulated inositol phosphate production twofold over basal levels through the 5-HT 2C-INI receptor and eightfold over basal levels through the 5-HT 2C-VGV receptor but produced similar maximal levels of inositol phosphate.
Background:The functional signaling unit of G-protein-coupled receptors is debated to be a monomer, dimer, or higher order oligomer. Results: Fluorescence correlation spectroscopy and photon counting histogram analysis, with single molecule sensitivity, identified 5-HT 2C receptor dimers without monomers or tetramers. Conclusion: Dimers are the basic signaling unit. Significance: Bivalent ligands may have therapeutic potential.
While many studies have provided evidence of homodimerization and heterodimerization of G-protein-coupled receptors (GPCRs), few studies have used fluorescence resonance energy transfer (FRET) combined with confocal microscopy to visualize receptor dimerization on the plasma membrane, and there have been no reports demonstrating the expression of serotonin receptor dimers/oligomers on the plasma membrane of living cells. In the study presented here, biochemical and biophysical techniques were used to determine if 5-HT(2C) receptors exist as homodimers on the plasma membrane of living cells. Immunoprecipitation followed by Western blotting revealed the presence of immunoreactive bands the predicted size of 5-HT(2C) receptor monomers and homodimers that were detergent and cross-linker sensitive. Bioluminescence resonance energy transfer (BRET) was assessed in HEK293 cells expressing 5-HT(2C) receptors labeled with Renilla luciferase and yellow fluorescent protein. BRET levels were not altered by pretreatment with serotonin. Confocal microscopy provided direct visualization of FRET on the plasma membrane of live cells expressing 5-HT(2C) receptors labeled with cyan (donor) and yellow (acceptor) fluorescent proteins. FRET, assessed by acceptor photobleaching, was dependent on the donor/acceptor ratio and independent of acceptor expression levels, indicating that FRET resulted from receptor clustering and not from overexpression of randomly distributed receptors, providing evidence for GPCR dimers/oligomers in a clustered distribution on the plasma membrane. The results of this study suggest that 5-HT(2C) receptors exist as constitutive homodimers on the plasma membrane of living cells. In addition, a confocal-based FRET method for monitoring receptor dimerization directly on the plasma membrane of living cells is described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.