Developing highly communicating scientific applications capable of efficiently use computational grids is not a trivial task. Ideally, these applications should consider grid topology 1) during the mesh partitioning, to balance workload among heterogeneous resources and exploit physical neighborhood, and 2) in communications, to lower the impact of latency and reduced bandwidth. Besides, this should not be a complex matter in end-users applications. These are the central concerns of the DiscoGrid project, which promotes the concept of a hierarchical SPMD programming model, along with a grid-aware multi-level mesh partitioning to enable the treatment of grid issues by the underlying runtime, in a seamless way for programmers. In this paper, we present the DiscoGrid project and the work around the GCM/ProActive-based implementation of the DiscoGrid Runtime. Experiments with a non-trivial computational electromagnetics application show that the component-based approach offers a flexible and efficient support and that the proposed programming model can ease the development of such applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.