Atrazine (ATZ) is one of the most commonly used herbicides contaminating plants, soil and water resources. Several strategies have been used to counteract ATZ toxicity. Here, we tested the hypothesis that lycopene could ameliorate ATZ-induced toxicity in the adrenal cortex. For this purpose, 35 adult male albino rats were randomized into five equal groups: untreated control, vehicle control (received 0.5 mL corn oil/day), lycopene (treated with lycopene dissolved in 0.5 mL corn oil, 10 mg/kg b.w./day), ATZ (received ATZ dissolved in 0.5 mL corn oil 300 mg/kg b.w./day), and ATZ + lycopene (treated with ATZ and lycopene at the same previously mentioned doses). All treatments were given by oral gavage for 4 weeks. We found that ATZ exposure significantly increased relative adrenal weight, plasma ACTH levels, and adrenal oxidative stress as manifested by elevated malondialdehyde levels, decreased reduced glutathione content and depressed antioxidant enzyme activities in adrenal cortex tissues with respect to control groups. Furthermore, the transcription of adrenal cortex nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor kappa B, and caspase-3 genes was increased significantly compared with the control groups. This was accompanied with DNA fragmentation and structural and ultrastructural changes in zona glomerulosa and zona fasiculata of the adrenal cortex. Notably, all these changes were partially ameliorated in rats treated concomitantly with ATZ and lycopene. Our results showed that lycopene exerts protective effects against ATZ-induced toxicity in rat adrenal cortex. These effects may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO-1 pathway.
Lead (Pb) is one of the most common toxic heavy metals. It is a well-known testicular toxicant. Selenium nanoparticles (SeNPs) are a more effective form of elemental selenium that reduces drug-induced toxicities. This study aimed to study the possible ameliorating effect of SeNPs on the toxicological and morphological changes in testes of lead acetate intoxicated rats. The study was conducted on 40 adult male albino rats divided into four groups; control, SeNPs-treated, lead acetate-treated, lead acetate and SeNPS treated groups.The concurrent treatment of lead acetate-exposed rats with SeNPs (0.1 mg/kg/ day) for 12 weeks significantly lowered the blood and testicular lead levels, increased serum testosterone, and decreased luteinizing hormone and folliclestimulating hormone to approach control values. In addition, it improved the histopathological, and ultrastructural alterations of the testes and improved the immunohistochemical expression of the c-kit. This was accompanied by maintenance of the testicular oxidant/antioxidant balance and reversing the lead-induced disrupted calmodulin-related genes expression in testicular tissue in the form of downregulation of CAMMK2 and MAP2K6 and upregulation of CXCR4 genes. There was a strong positive correlation between testicular malondialdehyde and MAP2K6 expression level as well as a strong positive correlation between CXCR4 gene expression and the C-kit area %. In conclusion, SeNPs can be considered as a potential therapy for a lead-induced testicular injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.