Metaplastic breast carcinoma (MBC) is relatively rare but accounts for a significant proportion of global breast cancer mortality. This group is extremely heterogeneous and by definition exhibits metaplastic change to squamous and/or mesenchymal elements, including spindle, squamous, chondroid, osseous, and rhabdomyoid features. Clinically, patients are more likely to present with large primary tumours (higher stage), distant metastases, and overall, have shorter 5‐year survival compared to invasive carcinomas of no special type. The current World Health Organisation (WHO) diagnostic classification for this cancer type is based purely on morphology – the biological basis and clinical relevance of its seven sub‐categories are currently unclear. By establishing the Asia‐Pacific MBC (AP‐MBC) Consortium, we amassed a large series of MBCs (n = 347) and analysed the mutation profile of a subset, expression of 14 breast cancer biomarkers, and clinicopathological correlates, contextualising our findings within the WHO guidelines. The most significant indicators of poor prognosis were large tumour size (T3; p = 0.004), loss of cytokeratin expression (lack of staining with pan‐cytokeratin AE1/3 antibody; p = 0.007), EGFR overexpression (p = 0.01), and for ‘mixed’ MBC, the presence of more than three distinct morphological entities (p = 0.007). Conversely, fewer morphological components and EGFR negativity were favourable indicators. Exome sequencing of 30 cases confirmed enrichment of TP53 and PTEN mutations, and intriguingly, concurrent mutations of TP53, PTEN, and PIK3CA. Mutations in neurofibromatosis‐1 (NF1) were also overrepresented [16.7% MBCs compared to ∼5% of breast cancers overall; enrichment p = 0.028; mutation significance p = 0.006 (OncodriveFM)], consistent with published case reports implicating germline NF1 mutations in MBC risk. Taken together, we propose a practically minor but clinically significant modification to the guidelines: all WHO_1 mixed‐type tumours should have the number of morphologies present recorded, as a mechanism for refining prognosis, and that EGFR and pan‐cytokeratin expression are important prognostic markers. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Background Metaplastic breast carcinoma encompasses a heterogeneous group of tumours with differentiation into squamous and/or spindle, chondroid, osseous or rhabdoid mesenchymal-looking elements. Emerging immunotherapies targeting Programmed Death Ligand 1 (PD-L1) and immune-suppressing T cells (Tregs) may benefit metaplastic breast cancer patients, which are typically chemo-resistant and do not express hormone therapy targets. Methods We evaluated the immunohistochemical expression of PD-L1 and FOXP3, and the extent of tumour infiltrating lymphocytes (TILs) in a large cohort of metaplastic breast cancers, with survival data. Results Metaplastic breast cancers were significantly enriched for PD-L1 positive tumour cells, compared to triple-negative ductal breast cancers (P < 0.0001), while there was no significant difference in PD-L1 positive TILs. Metaplastic breast cancers were also significantly enriched for TILs expressing FOXP3, with FOXP3 positive intra-tumoural TILs (iTILs) associated with an adverse prognostic outcome (P = 0.0226). Multivariate analysis identified FOXP3 iTILs expression status as an important independent prognostic factor for patient survival. Conclusions Our findings indicate the clinical significance and prognostic value of FOXP3, PD-1/PD-L1 checkpoint and TILs in metaplastic breast cancer and confirm that a subset of metaplastics may benefit from immune-based therapies.
Glandular structural features are important for the tumor pathologist in the assessment of cancer malignancy of prostate tissue slides. The varying shapes and sizes of glands combined with the tedious manual observation task can result in inaccurate assessment. There are also discrepancies and low-level agreement among pathologists, especially in cases of Gleason pattern 3 and pattern 4 prostate adenocarcinoma. An automated gland segmentation system can highlight various glandular shapes and structures for further analysis by the pathologist. These objective highlighted patterns can help reduce the assessment variability. We propose an automated gland segmentation system. Forty-three hematoxylin and eosin-stained images were acquired from prostate cancer tissue slides and were manually annotated for gland, lumen, periacinar retraction clefting, and stroma regions. Our automated gland segmentation system was trained using these manual annotations. It identifies these regions using a combination of pixel and object-level classifiers by incorporating local and spatial information for consolidating pixel-level classification results into object-level segmentation. Experimental results show that our method outperforms various texture and gland structure-based gland segmentation algorithms in the literature. Our method has good performance and can be a promising tool to help decrease interobserver variability among pathologists.
Metaplastic breast cancer (MpBC) is a fascinating morphologic sub-type of breast cancer, characterised by intra-tumoural heterogeneity. By definition, these tumors show regions of metaplasia that can present as spindle, squamous, chondroid or even osseous differentiation. MpBC are typically triple-negative, and are therefore not targetable with hormone therapy or anti-HER2 therapies, leaving only chemotherapeutics for management. MpBC are known for their aggressive course and poor response to chemotherapy. We review herein the pathology and molecular landscape of MpBC and discuss opportunities for targetted therapies as well as immunotherapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.