SUMMARY
Transcription elongation is increasingly recognized as an important mechanism of gene regulation. Here, we show that microprocessor controls gene expression in an RNAi-independent manner. Microprocessor orchestrates the recruitment of termination factors Setx and Xrn2, and the 3′–5′ exoribonuclease, Rrp6, to initiate RNAPII pausing and premature termination at the HIV-1 promoter through cleavage of the stem-loop RNA, TAR. Rrp6 further processes the cleavage product, which generates a small RNA that is required to mediate potent transcriptional repression and chromatin remodeling at the HIV-1 promoter. Using chromatin immunoprecipitation coupled to high-throughput sequencing (ChIP-seq), we identified cellular gene targets whose transcription is modulated by microprocessor. Our study reveals RNAPII pausing and premature termination mediated by the co-operative activity of ribonucleases, Drosha/Dgcr8, Xrn2, and Rrp6, as a regulatory mechanism of RNAPII-dependent transcription elongation.
Although the proteasome facilitates transcription from several yeast promoters, it is unclear if its role is proteolytic or which subunits are involved. We show that the proteasome regulates the HIV-1 promoter in both proteolytic and nonproteolytic modes. In the absence of transcription factor, Tat, proteasome was associated with promoter and coding regions, and its proteolytic activity regulated the level of basal transcription emanating from the promoter. Tat switched the proteasome to a nonproteolytic mode by recruiting a proteasome-associated protein, PAAF1, which favors proteasome dissociation into 19S and 20S particles. Gel filtration chromatography showed that expression of both Tat and PAAF1 enhanced the abundance of a 19S-like complex in nuclear extracts. 19S, but not 20S, subunits were strongly recruited to the promoter in the presence of Tat and PAAF1 and coactivated Tat-dependent transcription. 19S components facilitated transcriptional elongation and may be involved in clearance of paused transcriptional elongation complexes from the promoter.
Expression from the HIV-1 LTR can be repressed in a small population of cells, which contributes to the latent reservoir. The factors mediating this repression have not been clearly elucidated. We have identified a network of nuclear RNA surveillance factors that act as effectors of HIV-1 silencing. RRP6, MTR4, ZCCHC8 and ZFC3H1 physically associate with the HIV-1 TAR region and repress transcriptional output and recruitment of RNAPII to the LTR. Knock-down of these factors in J-Lat cells increased the number of GFP-positive cells, with a concomitant increase in histone marks associated with transcriptional activation. Loss of these factors increased HIV-1 expression from infected PBMCs and led to reactivation of HIV-1 from latently infected PBMCs. These findings identify a network of novel transcriptional repressors that control HIV-1 expression and which could open new avenues for therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.