The aim of this study was to analyse the morphofunctional and adaptive significance of variation in the upper incisor enamel microstructure of South American burrowing ctenomyids and other octodontoid taxa. We studied the specialized subterranean tooth-digger † Eucelophorus chapalmalensis (Pliocene -Middle Pleistocene), and compared it with other fossil and living ctenomyids with disparate digging adaptations, two fossorial octodontids and one arboreal echimyid. Morphofunctionally significant enamel traits were quite similar among the species studied despite their marked differences in habits, digging behaviour and substrates occupied, suggesting a possible phylogenetic constraint for the Octodontoidea. In this context of relative similarity, the inclination of Hunter-Schreger bands, relative thickness of external index (EI) and prismless enamel zone were highest in † Eucelophorus , in agreement with its outstanding craniomandibular tooth-digging specialization. Higher inclination of Hunter-Schreger bands reinforces enamel to withstand high tension forces, while high external index provides greater resistance to wear. Results suggest increased frequency of incisor use for digging in † Eucelophorus , which could be related to a more extreme tooth-digging strategy and/or occupancy of hard soils. Higher external index values as recurring patterns in distant clades of tooth-digging rodents support an adaptive significance of this enamel trait.
In the last three decades, records of tribosphenidan mammals from India, continental Africa, Madagascar and South America have challenged the notion of a strictly Laurasian distribution of the group during the Cretaceous. Here, we describe a lower premolar from the Late Cretaceous Adamantina Formation, São Paulo State, Brazil. It differs from all known fossil mammals, except for a putative eutherian from the same geologic unity and Deccanolestes hislopi, from the Maastrichtian of India. The incompleteness of the material precludes narrowing down its taxonomic attribution further than Tribosphenida, but it is larger than most coeval mammals and shows a thin layer of parallel crystallite enamel. The new taxon helps filling two major gaps in the fossil record: the paucity of Mesozoic mammals in more northern parts of South America and of tribosphenidans in the Cretaceous of that continent. In addition, high-precision U-Pb geochronology provided a post-Turonian maximal age (≤87.8 Ma) for the type stratum, which is overlain by the dinosaur-bearing Marília Formation, constraining the age of the Adamantina Formation at the site to late Coniacian–late Maastrichtian. This represents the first radioisotopic age for the Bauru Group, a key stratigraphic unit for the study of Cretaceous tetrapods in Gondwana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.