SUMMARY Background Renal failure occurs in 5–18% of sickle cell disease (SCD) patients and is associated with early mortality. At risk SCD patients cannot be identified prior to the appearance of proteinuria and the pathobiology is not well understood. The MYH9 and APOL1 genes have been associated with risk for focal segmental glomerulosclerosis and end-stage renal disease in African Americans. Methods We genotyped 26 SNPs in MYH9 and 2 SNPs in APOL1 in 521 unrelated adult (18–83 years) SCD patients screened for proteinuria. Using logistic regression, SNPs were evaluated for association with proteinuria. Results Eight MYH9 SNPs and one APOL1 SNP were nominally associated with proteinuria. Six SNPs remained significant after multiple testing correction (p < 0.0025), and a risk haplotype was associated with proteinuria (p=0.001). Using multiple regression, association with APOL1 diminished in the presence of MYH9 SNPs. Glomerular filtration rate was negatively correlated with proteinuria (p < 0.0001), and was nominally associated with MYH9 and APOL1 in age-adjusted analyses. Conclusion Our data provide insight into the pathobiology of renal dysfunction in SCD, suggesting that MYH9 is more strongly associated than APOL1. These data also provide the opportunity for early identification of patients at risk and new therapeutics.
Background Sickle cell disease (SCD) is a neglected burden of growing importance. >312,000 births are affected annually by sickle cell anaemia (SCA). Early interventions such as newborn screening, penicillin prophylaxis and hydroxyurea can substantially reduce the mortality and morbidity associated with SCD. Nevertheless, their implementation in African countries has been mostly limited to pilot projects. Recent development of low-cost point-of-care testing (POCT) devices for sickle haemoglobin (HbS) could greatly facilitate the diagnosis of those affected. Methods We conducted the first multi-centre, real-world assessment of a low-cost POCT device, HemoTypeSC, in a low-income country. Between September and November 2017, we screened 1121 babies using both HemoTypeSC and HPLC and confirmed discordant samples by molecular diagnosis. Findings We found that, in optimal field conditions, the sensitivity and specificity of the test for SCA were 93.4% and 99.9%, respectively. All 14 carriers of haemoglobin C were successfully identified. Our study reveals an overall accuracy of 99.1%, but also highlights the importance of rigorous data collection, staff training and accurate confirmatory testing. It suggests that HPLC results might not be as reliable in a resource-poor setting as usually considered. Interpretation The use of such a POCT device can be scaled up and routinely used across multiple healthcare centres in sub-Saharan Africa, which would offer great potential for the identification and management of vast numbers of individuals affected by SCD who are currently undiagnosed. Funding US Imperial College London's Wellcome Trust Centre for Global Health Research (grant #WMNP P43370).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.