Abstract:We revisit the so-called "Geodesic Witten Diagrams" (GWDs) [1], proposed to be the holographic dual configuration of scalar conformal partial waves, from the perspectives of CFT operator product expansions. To this end, we explicitly consider three point GWDs which are natural building blocks of all possible four point GWDs, discuss their gluing procedure through integration over spectral parameter, and this leads us to a direct identification with the integral representation of CFT conformal partial waves. As a main application of this general construction, we consider the holographic dual of the conformal partial waves for external primary operators with spins. Moreover, we consider the closely related "split representation" for the bulk to bulk spinning propagator, to demonstrate how ordinary scalar Witten diagram with arbitrary spin exchange, can be systematically decomposed into scalar GWDs. We also discuss how to generalize to spinning cases.
Recurrent neural networks have seen widespread use in modeling dynamical systems in varied domains such as weather prediction, text prediction and several others. Often one wishes to supplement the experimentally observed dynamics with prior knowledge or intuition about the system. While the recurrent nature of these networks allows them to model arbitrarily long memories in the time series used in training, it makes it harder to impose prior knowledge or intuition through generic constraints. In this work, we present a path sampling approach based on principle of Maximum Caliber that allows us to include generic thermodynamic or kinetic constraints into recurrent neural networks. We show the method here for a widely used type of recurrent neural network known as long short-term memory network in the context of supplementing time series collected from different application domains. These include classical Molecular Dynamics of a protein and Monte Carlo simulations of an open quantum system continuously losing photons to the environment and displaying Rabi oscillations. Our method can be easily generalized to other generative artificial intelligence models and to generic time series in different areas of physical and social sciences, where one wishes to supplement limited data with intuition or theory based corrections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.