The influence of thermal treatments on the properties of mixed bromide-iodide organolead perovskites (MAPbI3−xBrx, MA=CH3NH3) is investigated in films prepared in air by single-step solution processes based on different precursor solutions. Initially, the bandgap energy (EG) dependence on composition is reconsidered on films obtained by mixtures of tri-halide solutions.An EG(x) relation is obtained that is expected to be independent of the film properties and can be used to assess perovskite composition. In these samples recombination centres are observed whose energy depth increases with x, likely involving the simultaneous presence of iodide and bromide, while the Urbach energy increases with the grain surface-to-volume ratio, which points out that the defects giving sub-bandgap absorption originate from grain boundaries. Tri-halide mixtures allow perovskite synthetic processes suitable for solar cell production, being fast and reproducible. A slight MABr excess in the solution made of MABr and PbI2 gives MAPbI2Br films free of PbI2 phases and with a high compositional stability, but non-radiative recombination channels can make the material not appropriate for high efficiency solar cells.Finally, the solution made of MAI and PbBr2 (3:1 molar ratio) is the less promising for solar cell production because its non-stoichiometric nature synthesis reproducibility an issue.
A new class of neutral cyclometalated iridium(III) complexes with enantiomerically pure C(1)-symmetric phenol-oxazolines (3a,b) have been synthetized in high yields and fully characterized. Resolution of the corresponding Δ(R) and Λ(R) or Δ(S) and Λ(S) isomers was easily achieved by conventional flash chromatography. The corresponding Δ and Λ helicities have been confirmed by CD spectroscopy and X-ray crystallography. Regarding the absorption and luminescence properties with unpolarized light, no significant difference between Δ and Λ isomers has been observed. A strong blue luminescence is observed for deaerated solutions of complexes 5a and 5b in CH(3)CN.
Biological oxygen measurements by phosphorescence quenching make use of exogenous phosphorescent probes, which are introduced directly into the medium of interest (e.g. blood or interstitial fluid) where they serve as molecular sensors for oxygen. The byproduct of the quenching reaction is singlet oxygen, a highly reactive species capable of damaging biological tissue. Consequently, potential probe phototoxicity is a concern for biological applications. Herein, we compared the ability of polyethyleneglycol (PEG)-coated Pd tetrabenzoporphyrin (PdTBP)-based dendritic nanoprobes of three successive generations to sensitize singlet oxygen. It was found that the size of the dendrimer has practically no effect on the singlet oxygen sensitization efficiency in spite of the strong attenuation of the triplet quenching rate with an increase in the dendrimer generation. This unexpected result is due to the fact that the lifetime of the PdTBP triplet state in the absence of oxygen increases with dendritic generation, thus compensating for the concomitant decrease in the rate of quenching. Nevertheless, in spite of their ability to sensitize singlet oxygen, the phosphorescent probes were found to be non-phototoxic when compared with the commonly used photodynamic drug Photofrin in a standard cell-survival assay. The lack of phototoxicity is presumably due to the inability of PEGylated probes to associate with cell surfaces and/or penetrate cellular membranes. In contrast, conventional photosensitizers bind to cell components and act by generating singlet oxygen inside or in the immediate vicinity of cellular organelles. Therefore, PEGylated dendritic probes are safe to use for tissue oxygen measurements as long as the light doses are less than or equal to those commonly employed in photodynamic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.