Explorations of learning and memory, other long-term plastic changes, and additional cognitive functions in the behaving primate brain would greatly benefit from the ability to image the functional architecture within the same patch of cortex, at the columnar level, for a long period of time. We developed methods for long-term optical imaging based on intrinsic signals and repeatedly visualized the same functional domains in behaving macaque cortex for a period extending over 1 year. Using optical imaging and imaging spectroscopy, we first explored the relationship between electrical activity and hemodynamic events in the awake behaving primate and compared it with anesthetized preparations. We found that, whereas the amplitude of the intrinsic signal was much larger in the awake animal, its temporal pattern was similar to that observed in the anesthetized animals. In both groups, deoxyhemoglobin concentration reached a peak 2-3 sec after stimulus onset. Furthermore, the early activitydependent increase in deoxyhemoglobin concentration (the "initial dip") was far more tightly colocalized with electrical activity than the delayed increase in oxyhemoglobin concentration, known to be associated with an increase in blood flow. The implications of these results for improvement of the spatial resolution of blood oxygenation level-dependent functional magnetic resonance imaging are discussed. After the characterization of the intrinsic signal in the behaving primate, we used this new imaging method to explore the stability of cortical maps in the macaque primary visual cortex. Functional maps of orientation and ocular dominance columns were found to be stable for a period longer than 1 year.
Structural changes in hippocampal dendrites and dendritic spines are thought to be a consequence of a wide range of experience-and activity-dependent manipulations. We explored the dynamics of hippocampal dendritic spines in vivo by developing a surgical preparation of the adult mouse brain that enabled two-photon imaging of fluorescently labeled CA1 pyramidal neurons. Dendritic trees and spines were repeatedly visualized over many hours in exquisite detail. We tested spine stability under both control conditions and during prolonged epileptic seizures. Remarkably, spines remained structurally stable after 30 min of experimental induction of epileptic seizures. Spines began to disappear only several hours after induction of epileptic activity. We thus demonstrate that this technique provides a methodology for direct in vivo optical studies of the intact mammalian hippocampus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.