Crataegus laevigata and Crataegus monogyna (hawthorn) were subjected to drought and cold stress treatments, and polyphenolic extracts from control and stress-treated plants were assayed for antioxidant capacities using a modified version of the Total Antioxidant Status Assay (Randox, San Francisco, CA). In addition, these plants were analyzed for levels of flavanol-type substance [(-)-epicatechin] and flavonoid (vitexin 2' '-O-rhamnoside, acetylvitexin 2' '-O-rhamnoside, and hyperoside) constituents that are important metabolites in hawthorn herbal preparations used to treat patients with heart disease. Drought and cold stress treatments caused increases in levels of (-)-epicatechin and hyperoside in both Crataegus species. Such treatments also enhanced the antioxidant capacity of the extracts. The results from this study thus indicate that these kinds of stress treatments can enhance the levels of important secondary metabolites and their total antioxidant capacities in leaves of Crataegus.
Metabolic syndrome can precede the development of type 2 diabetes and cardiovascular disease and includes phenotypes such as obesity, systemic inflammation, insulin resistance, and hyperlipidemia. A recent epidemiological study indicated that blueberry intake reduced cardiovascular mortality in humans, but the possible genetic mechanisms of this effect are unknown. Blueberries are a rich source of anthocyanins, and anthocyanins can alter the activity of peroxisome proliferator-activated receptors (PPARs), which affect energy substrate metabolism. The effect of blueberry intake was assessed in obesity-prone rats. Zucker Fatty and Zucker Lean rats were fed a higher-fat diet (45% of kcal) or a lower-fat diet (10% of kcal) containing 2% (wt/wt) freeze-dried whole highbush blueberry powder or added sugars to match macronutrient and calorie content. In Zucker Fatty rats fed a high-fat diet, the addition of blueberry reduced triglycerides, fasting insulin, homeostasis model index of insulin resistance, and glucose area under the curve. Blueberry intake also reduced abdominal fat mass, increased adipose and skeletal muscle PPAR activity, and affected PPAR transcripts involved in fat oxidation and glucose uptake/oxidation. In Zucker Fatty rats fed a low-fat diet, the addition of blueberry also significantly reduced liver weight, body weight, and total fat mass. Finally, Zucker Lean rats fed blueberry had higher body weight and reduced triglycerides, but all other measures were unaffected. In conclusion, whole blueberry intake reduced phenotypes of metabolic syndrome in obesity-prone rats and affected PPAR gene transcripts in adipose and muscle tissue involved in fat and glucose metabolism.
Background
Heart failure with preserved ejection fraction (HFPEF) involves failure of cardiovascular reserve in multiple domains. In HFPEF animal models, dietary sodium restriction improves ventricular and vascular stiffness and function. We hypothesized that the sodium-restricted Dietary Approaches to Stop Hypertension diet (DASH/SRD) would improve left ventricular diastolic function, arterial elastance, and ventricular-arterial (V-A) coupling in hypertensive HFPEF.
Methods and Results
Thirteen patients with treated hypertension and compensated HFPEF consumed the DASH/SRD (target sodium 50 mmol/2100 kcal) for 21 days. We measured baseline and post-DASH/SRD brachial and central BP (via radial arterial tonometry), and cardiovascular function with echocardiographic measures (all previously invasively validated). Diastolic function was quantified via the Parametrized Diastolic Filling formalism, which yields relaxation/viscoelastic (c) and passive/stiffness (k) constants through analysis of Doppler mitral inflow velocity (E-wave) contours. Effective arterial elastance (Ea) end-systolic elastance (Ees), and V-A coupling (defined as the ratio Ees:Ea) were determined using previously published techniques. Wilcoxon matched-pairs tests were used for pre-post comparisons.
The DASH/SRD reduced clinic and 24-hour brachial systolic pressure (155±35 to 138±30 and 130±16 to 123±18 mmHg, both p=.02) and central end-systolic pressure trended lower (116±18 to 111±16 mmHg, p=.12). In conjunction, diastolic function improved (c, 24.3±5.3 to 22.7±8.1 s−1;p=.03; k, 252±115 to 170±37 s−1;p=.03), Ea decreased (2.0±0.4 to 1.7±0.4 mmHg/ml;p=.007), and V-A coupling improved (Ees:Ea, 1.5±0.3 to 1.7±0.4;p=.04).
Conclusions
In hypertensive HFPEF patients, the sodium-restricted DASH diet was associated with favorable changes in ventricular diastolic function, arterial elastance, and V-A coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.