Background 18F-FDG-PET/CT has become a standard for assessing treatment response in patients with lymphoma. A subjective interpretation of the scan based on the Deauville 5-point scale has been widely adopted. However, inter-observer variability due to the subjectivity of the interpretation is a limitation. Our main goal is to develop an objective and automated method for evaluating response. The first step is to develop and validate an artificial intelligence (AI)-based method, for the automated quantification of reference levels in the liver and mediastinal blood pool in patients with lymphoma. Methods The AI-based method was trained to segment the liver and the mediastinal blood pool in CT images from 80 lymphoma patients, who had undergone 18F-FDG-PET/CT, and apply this to a validation group of six lymphoma patients. CT segmentations were transferred to the PET images to obtain automatic standardized uptake values (SUV). The AI-based analysis was compared to corresponding manual segmentations performed by two radiologists. Results The mean difference for the comparison between the AI-based liver SUV quantifications and those of the two radiologists in the validation group was 0Á02 and 0Á02, respectively, and 0Á02 and 0Á02 for mediastinal blood pool respectively. Conclusions An AI-based method for the automated quantification of reference levels in the liver and mediastinal blood pool shows good agreement with results obtained by experienced radiologists who had manually segmented the CT images. This is a first, promising step towards objective treatment response evaluation in patients with lymphoma based on 18F-FDG-PET/CT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.