Cell-free protein synthesis has emerged as a powerful technology for rapid and efficient protein production. Cell-free methods are also amenable to automation and such systems have been extensively used for high-throughput protein production and screening; however, current fluidic systems are not adequate for manufacturing protein biopharmaceuticals. In this work, we report on the initial development of a fluidic process for rapid end-to-end production of recombinant protein biologics. This process incorporates a bioreactor module that can be used with eukaryotic or prokaryotic lysates that are programmed for combined transcription/translation of an engineered DNA template encoding for specific protein targets. Purification of the cell-free expressed product occurs through a series of protein separation modules that are configurable for process-specific isolation of different proteins. Using this approach, we demonstrate production of two bioactive human protein therapeutics, erythropoietin and granulocyte-macrophage colony-stimulating factor, in yeast and bacterial extracts, respectively, each within 24 hours. This process is flexible, scalable and amenable to automation for rapid production at the point-of-need of proteins with significant pharmaceutical, medical, or biotechnological value.
BackgroundGenetically modified organisms (GMOs) have numerous biomedical, agricultural and environmental applications. Development of accurate methods for the detection of GMOs is a prerequisite for the identification and control of authorized and unauthorized release of these engineered organisms into the environment and into the food chain. Current detection methods are unable to detect uncharacterized GMOs, since either the DNA sequence of the transgene or the amino acid sequence of the protein must be known for DNA-based or immunological-based detection, respectively.MethodsHere we describe the application of an epigenetics-based approach for the detection of mammalian GMOs via analysis of chromatin structural changes occurring in the host nucleus upon the insertion of foreign or endogenous DNA.ResultsImmunological methods combined with DNA next generation sequencing enabled direct interrogation of chromatin structure and identification of insertions of various size foreign (human or viral) DNA sequences, DNA sequences often used as genome modification tools (e.g. viral sequences, transposon elements), or endogenous DNA sequences into the nuclear genome of a model animal organism.ConclusionsThe results provide a proof-of-concept that epigenetic approaches can be used to detect the insertion of endogenous and exogenous sequences into the genome of higher organisms where the method of genetic modification, the sequence of inserted DNA, and the exact genomic insertion site(s) are unknown.General significanceMeasurement of chromatin dynamics as a sensor for detection of genomic manipulation and, more broadly, organism exposure to environmental or other factors affecting the epigenomic landscape are discussed.
BackgroundIdentification of wound-specific markers would represent an important step toward damaged tissue detection and targeted delivery of biologically important materials to injured sites. Such delivery could minimize the amount of therapeutic materials that must be administered and limit potential collateral damage on nearby normal tissues. Yet, biological markers that are specific for injured tissue sites remain elusive.MethodsIn this study, we have developed an immunohistological approach for identification of protein epitopes specifically exposed in wounded tissue sites.ResultsUsing ex-vivo tissue samples in combination with fluorescently-labeled antibodies we show that actin, an intracellular cytoskeletal protein, is specifically exposed upon injury. The targetability of actin in injured sites has been demonstrated in vivo through the specific delivery of anti-actin conjugated particles to the wounded tissue in a lethal rat model of grade IV liver injury.ConclusionsThese results illustrate that identification of injury-specific protein markers and their targetability for specific delivery is feasible.General significanceIdentification of wound-specific targets has important medical applications as it could enable specific delivery of various products, such as expression vectors, therapeutic drugs, hemostatic materials, tissue healing, or scar prevention agents, to internal sites of penetrating or surgical wounds regardless of origin, geometry or location.
Protein biologics have emerged as a safe and effective group of drug products that can be used in a variety of medical disorders and clinical settings, including treatment of orphan diseases, personalized medicine, and point-of-care applications. However, the full potential of protein biologics for such applications will not be realized until there are methods available for rapid and cost-effective production of small scale products for individual needs. Here, we describe a modular and scalable method for rapid and adaptable production of protein-based medical products at small doses. The method includes cell-free synthesis of the protein target in a reactor module followed by a fluidic process for protein purification. As a proof of concept, we describe the application of this method for expression and purification of a bioactive pharmaceutically relevant protein biologic, recombinant human erythropoietin, at a single dose within 24 h. This method can be applied toward the development of automated platforms for rapid and adaptive production of protein biologics at the point of care in response to specific medical needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.