[1] Understanding links between water consumers and climatological (precipitation) sources is essential for developing strategies to ensure the long-term sustainability of water supplies. In pursing this understanding a need exists for tools to study and monitor complex human-hydrological systems that involve high levels of spatial connectivity and supply problems that are regional, rather than local, in nature. Here we report the first national-level survey of stable isotope ratios in tap water, including spatially and temporally explicit samples from a large number of cities and towns across the contiguous United States. We show that intra-annual ranges of tap water isotope ratios are relatively small (e.g., <10% for d 2 H) at most sites. In contrast, spatial variation in tap water isotope ratios is very large, spanning ranges of 163% for d 2 H and 23.6% for d 18 O. The spatial distribution of tap water isotope ratios at the national level is similar to that of stable isotope ratios of precipitation. At the regional level, however, pervasive differences between tap water and precipitation isotope ratios can be attributed to hydrological factors in the water source to consumer chain. These patterns highlight the potential for monitoring of tap water isotope ratios to contribute to the study of regional water supply stability and provide warning signals for impending water resource changes. We present the first published maps of predicted tap water isotope ratios for the contiguous United States, which will be useful in guiding future research on humanhydrological systems and as a tool for applied forensics and traceability studies.
Climate models project that by 2100, the northeastern US and eastern Canada will warm by approximately 3–5 °C, with increased winter precipitation. These changes will affect trees directly and also indirectly through effects on “nuisance” species, such as insect pests, pathogens, and invasive plants. We review how basic ecological principles can be used to predict nuisance species’ responses to climate change and how this is likely to impact northeastern forests. We then examine in detail the potential responses of two pest species (hemlock woolly adelgid ( Adelges tsugae Annand) and forest tent caterpillar ( Malacosoma disstria Hubner)), two pathogens (armillaria root rot ( Armillaria spp.) and beech bark disease ( Cryptococcus fagisuga Lind. + Neonectria spp.)), and two invasive plant species (glossy buckthorn ( Frangula alnus Mill.) and oriental bittersweet ( Celastrus orbiculatus Thunb.)). Several of these species are likely to have stronger or more widespread effects on forest composition and structure under the projected climate. However, uncertainty pervades our predictions because we lack adequate data on the species and because some species depend on complex, incompletely understood, unstable relationships. While targeted research will increase our confidence in making predictions, some uncertainty will always persist. Therefore, we encourage policies that allow for this uncertainty by considering a wide range of possible scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.