The Climate-Carbon cycle Feedback (CCF) affects emission metric values. In the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change metric values for Global Warming Potentials (GWP) and Global Temperature Potentials (GTP) are reported both with and without CCF for non-CO 2 climate forcers, while CCF is always included for CO 2 . The estimation of CCF for non-CO 2 climate forcers in AR5 is based on a linear feedback analysis. This study compares that approach with an explicit approach that uses a temperature dependent carbon cycle model. The key difference in the CCF results for non-CO 2 climate forcers is that, with the approach used in AR5, a fraction of the CO 2 signal induced by non-CO 2 forcers will persist in the atmosphere basically forever, while, with the approach based on an explicit carbon cycle model, the atmospheric CO 2 signal induced by non-CO 2 forcers eventually vanishes. The differences in metric values between the two model approaches are within 卤 10% for all wellmixed greenhouse gases when the time horizon is limited to 100 yr or less, for both GWP and GTP. However, for long time horizons, such as 500 yr, metric values are substantially lower with the explicit CCF model than with the linear feedback approach, up to 30% lower for GWP and up to 90% lower for GTP.
Especially in lower-income countries, the distribution of renewable resources in open access settings often reflects the non-cooperative spatial extraction decisions of many individuals who spread out across a landscape. These individuals recognize tradeoffs between distance to the resource, density, and competition amongst extractors. In this paper we present a game theoretic model that explicitly accommodates such explicitly spatial non-cooperative behavior with respect to the extraction of a stationary renewable natural resource, such as a non-timber forest products or bivalvia (for example, oysters, clams), that is located in a two dimensional landscape. Villagers that have identical labor allocations and preferences are shown to undertake very different extraction pathways in equilibrium. For example, some may extract in more congested patches closer to the village while others may extract in less crowded but more distant patches. For many parameterizations, we find multiple spatial Nash equilibria that differ with respect to the number of villagers at each resource location, whether individual villagers extract from one or multiple locations, and the extent and spatial pattern of resource degradation. In addition to finding equilibria with widely different actions taken by identical extractors, the analysis here demonstrates the impact of simplifying assumptions for spatial decisions on predictions of policy impact, resource distributions, and conflict.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.