We study a generalization of the Navier-Stokes-Fourier system for an incompressible fluid where the deviatoric part of the Cauchy stress tensor is related to the symmetric part of the velocity gradient via a maximal monotone 2-graph that is continuously parametrized by the temperature. As such, the considered fluid may go through transitions between three of the following regimes: it can flow as a Bingham fluid for a specific value of the temperature, while it can behave as the Navier-Stokes fluid for another value of the temperature or, for yet another temperature, it can respond as the Euler fluid until a certain activation initiates the response of the Navier-Stokes fluid. At the same time, we regard a generalized threshold slip on the boundary that also may go through various regimes continuously with the temperature. All material coefficients like the dynamic viscosity, friction or activation coefficients are assumed to be temperature-dependent. We establish the large-data and long-time existence of weak solutions, applying the L ∞ -truncation technique to approximate the velocity field.
We study systems of nonlinear partial differential equations of parabolic type, in which the elliptic operator is replaced by the first-order divergence operator acting on a flux function, which is related to the spatial gradient of the unknown through an additional implicit equation. This setting, broad enough in terms of applications, significantly expands the paradigm of nonlinear parabolic problems. Formulating four conditions concerning the form of the implicit equation, we first show that these conditions describe a maximal monotone [Formula: see text]-coercive graph. We then establish the global-in-time and large-data existence of a (weak) solution and its uniqueness. To this end, we adopt and significantly generalize Minty’s method of monotone mappings. A unified theory, containing several novel tools, is developed in a way to be tractable from the point of view of numerical approximations.
We study the minimization of convex, variational integrals of linear growth among all functions in the Sobolev space W 1,1 with prescribed boundary values (or its equivalent formulation as a boundary value problem for a degenerately elliptic Euler-Lagrange equation). Due to insufficient compactness properties of these Dirichlet classes, the existence of solutions does not follow in a standard way by the direct method in the calculus of variations and in fact might fail, as it is well-known already for the nonparametric minimal surface problem. Assuming radial structure, we establish a necessary and sufficient condition on the integrand such that the Dirichlet problem is in general solvable, in the sense that a Lipschitz solution exists for any regular domain and all prescribed regular boundary values, via the construction of appropriate barrier functions in the tradition of Serrin's paper [19]. p
Dedicated to Professor Carlo Sbordone on the occasion of his 70th birthday.Abstract. We prove global Lipschitz regularity for a wide class of convex variational integrals among all functions in W 1,1 with prescribed (sufficiently regular) boundary values, which are not assumed to satisfy any geometrical constraint (as for example bounded slope condition). Furthermore, we do not assume any restrictive assumption on the geometry of the domain and the result is valid for all sufficiently smooth domains. The result is achieved with a suitable approximation of the functional together with a new construction of appropriate barrier functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.