Rationale Vascular endothelial (VE)-cadherin localized at adherens junctions (AJs) regulates endothelial barrier function. As WNT (wingless) signaling-induced activation of the transcription factor Krüppel-like factor-4 (KLF4) may have an important role in mediating the expression of VE-cadherin and AJ integrity, we studied the function of KLF4 in regulating VE-cadherin expression and the control of endothelial barrier function. Objective The goal of this study was to determine the transcriptional role of KLF4 in regulating VE-cadherin expression and endothelial barrier function. Methods and Results Expression analysis, microscopy, chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assays (EMSA), and VE-cadherin-luciferase reporter experiments demonstrated that KLF4 interacted with specific domains of VE-cadherin promoter and regulated the expression of VE-cadherin at AJs. KLF4 knockdown disrupted the endothelial barrier, indicating that KLF4 is required for normal barrier function. In vivo studies in mice showed augmented lipopolysaccharide-induced lung injury and pulmonary edema following Klf4 depletion. Conclusion Our data show the key role of KLF4 in the regulation of VE-cadherin expression at the level of the AJs and in the acquisition of VE-cadherin-mediated endothelial barrier function. Thus, KLF4 maintains the integrity of AJs and prevents vascular leakage in response to inflammatory stimuli.
NANOG is a master transcription factor associated with the maintenance of stem cell pluripotency. Here, we demonstrate that transcription factor NANOG is expressed in cultured endothelial cells (ECs) and in a subset of tumor cell lines. Importantly, we provide evidence that WNT3A stimulation of ECs induces the transcription of NANOG which mediates the expression of vascular endothelial growth factor receptor-2, also known as fetal liver kinase-1 (FLK1). We defined ATTA as a minimal binding site for NANOG. Accordingly, a luciferase reporter assay showed that NANOG binds to and activates 4 ATTA binding sites identified in the FLK1 promoter after WNT3A stimulation. Consistent with this data, we found that, under basal conditions and in response to WNT3A stimulation, NANOG binding to these ATTA sequences markedly induced the expression of FLK1. Thus, our data indicate an essential role in angiogenesis for NANOG binding to these 4 ATTA sites. Surprisingly, NANOG depletion not only decreased FLK1 expression but also reduced cell proliferation and angiogenesis. These findings show the necessary and sufficient role of NANOG in inducing the transcription of IntroductionAngiogenesis, the sprouting of new capillaries from preexisting blood vessels, is not only required for embryonic development and wound healing but also contributes to pathologic processes, including atherosclerosis, diabetic retinopathy, and tumor progression. 1,2 In this regard, the activation of Wnt (Wingless) signaling in endothelial cells (ECs) has been shown to induce transcriptional events to regulate angiogenesis [3][4][5] ; however, the underlying mechanisms of these processes are not entirely clear. Beyond binding to the cytoplasmic domain of vascular endothelial-or E-cadherin, -catenin plays a key role in the transduction of Wnt signals by serving as a coactivator for the transcription factor T-cell factor/ lymphocyte enhancer binding factor (TCF/LEF-1). 6,7 The ligation of Wnt to the Frizzled receptor induces the inhibition of glycogen synthase kinase-3 that results in decreased phosphorylation of -catenin, thereby reduced proteolysis and degradation. [5][6][7] Stabilized -catenin translocates into the nucleus to associate with transcription factors of the TCF/LEF-1 family that can transactivate genes containing TCF/LEF-1 binding sequences. [5][6][7] Recent gene expression profiling has identified a role for Wnt signaling in EC commitment 8 and in control of vasculo-angiogenic aspects of embryonic development. [9][10][11][12][13][14][15] NANOG is a divergent homeobox transcription factor expressed in germ cells and pluripotent stem cells that is critical for morphogenesis and embryonic development. [16][17][18][19] Mouse embryos lacking nanog die between days embryonic (E) 3.5 and E5.5, before any vasculature has developed. 20,21 Nanog overexpression renders mouse embryonic stem (ES) cells independent of leukemia inhibitory factor/signal transducer and activator of transcription-3 stimulation for self-renewal. [17][18][19] Analyses of the ...
Oxidative modifications of LDL are a major risk factor in the development of vascular disease and are known to induce endothelial dysfunction, one of the earliest manifestations of atherosclerosis (1, 2). Our studies focus on the oxidized LDL (oxLDL)-induced impact on endothelial biomechanics and its role in vascular dysfunction.Our recent studies showed that the stiffness of aortic endothelial cells (ECs) is significantly increased by exposing the cells to oxLDL in vitro or by dyslipidemia in the dietinduced porcine atherosclerosis model in vivo (3, 4). An increase in endothelial stiffness was accompanied by an increase in endothelial contractile forces generated on the cell-substrate interface and an enhanced ability of ECs to form branching networks in 3D cultures (3, 4), which is considered a prerequisite of angiogenesis (5). Moreover, earlier studies demonstrated a correlation between increased endothelial force and network formation across several endothelial subtypes (6). We proposed, therefore, that oxLDL-induced endothelial stiffening may lead to increased angiogenic activity of ECs during the development of atherosclerotic plaques. This process is expected to be of major clinical importance because neovascularization of the plaques is increasingly recognized as a critical process and a major risk factor for plaque vulnerability (7). The goal of this study is to elucidate the mechanism of oxLDL-induced endothelial stiffening and evaluate a link between this effect and the ability of ECs to form functional capillaries. Abstract Endothelial biomechanics is
RationaleInduced pluripotent stem (iPS) cells have emerged as a source of potentially unlimited supply of autologous endothelial cells (ECs) for vascularization. However, the regenerative function of these cells relative to adult ECs and ECs derived from embryonic stem (ES) cells is unknown. The objective was to define the differentiation characteristics and vascularization potential of Fetal liver kinase (Flk)1+ and Vascular Endothelial (VE)-cadherin+ ECs derived identically from mouse (m)ES and miPS cells. Methods and ResultsNaive mES and miPS cells cultured in type IV collagen (IV Col) in defined media for 5 days induced the formation of adherent cell populations, which demonstrated similar expression of Flk1 and VE-cadherin and the emergence of EC progenies. FACS purification resulted in 100% Flk1+ VE-cadherin+ cells from both mES and miPS cells. Emergence of Flk1+VE-cadherin+ cells entailed expression of the vascular developmental transcription factor Er71, which bound identically to Flk1, VE-cadherin, and CD31 promoters in both populations. Immunostaining with anti-VE-cadherin and anti-CD31 antibodies and microscopy demonstrated the endothelial nature of these cells. Each cell population (unlike mature ECs) organized into well-developed vascular structures in vitro and incorporated into CD31+ neovessels in matrigel plugs implanted in nude mice in vivo.ConclusionThus, iPS cell-derived Flk1+VE-cadherin+ cells expressing the Er71 are as angiogenic as mES cell-derived cells and incorporate into CD31+ neovessels. Their vessel forming capacity highlights the potential of autologous iPS cells-derived EC progeny for therapeutic angiogenesis.
Endothelial cell (EC) dedifferentiation in relation to neovascularization is a poorly understood process. In this report we addressed the role of Wnt signaling in the mechanisms of neovascularization in adult tissues. Here, we show that a low-dose of 6-bromoindirubin-3′-oxime (BIO), a competitive inhibitor of Glycogen Synthase Kinase (GSK)-3β, induced the stabilization of β-catenin and its subsequent direct interaction with the transcription factor NANOG in the nucleus of ECs. This event induced loss of VE-cadherin from the adherens junctions, increased EC proliferation accompanied by asymmetric cell division (ACD), and formed cellular aggregates in a hanging drop assays indicating the acquisition of a dedifferentiated state. In a chromatin immunoprecipitation assay, nuclear NANOG protein bound to the NANOG- and VEGFR2-promoters in ECs, and the addition of BIO activated the NANOG-promoter-luciferase reporter system in a cell-based assay. Consequently, NANOG-knockdown decreased BIO-induced NOTCH-1 expression, thereby decreasing cell proliferation, ACD and neovascularization. In a Matrigel plug assay, BIO induced increased neovascularization, secondary to the presence of VEGF. Moreover, in a mouse model of hind limb ischemia, BIO augmented neovascularization that was coupled with increased expression of NOTCH-1 in ECs and increased smooth muscle α-actin (SMA)+ cell recruitment around the neovessels. Thus, these results show the ability of a low-dose of BIO to augment neovascularization secondary to VEGF, a process that was accompanied by a partial dedifferentiation of ECs via β-catenin and the NANOG signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.