Catalytic reactions that enable the formation of new bonds to carbon centres play a pervasive role in the state-of-the-art synthesis of organic molecules and macromolecules. In contrast, the development of analogous processes as routes to main group compounds and materials has been much slower. Nevertheless, recent advances have led to a broad expansion of this field and now allow access to a wide range of catenated structures based on elements across the p block. These breakthroughs have already impacted areas such as hydrogen storage and transfer, functional inorganic polymers and ceramic thin films. Dehydrogenation and dehydrocoupling processes are particularly well developed and may be mediated by either transition metal or main group catalysts. Such pathways represent an increasingly attractive and convenient alternative to traditional routes, such as salt metathesis and reductive coupling reactions. An overview of this emerging area is presented in this Review with a focus on recent developments and future challenges.
Living crystallization-driven self-assembly (CDSA) is a seeded growth method for crystallizable block copolymers (BCPs) and related amphiphiles in solution and has recently emerged as a highly promising and versatile route to uniform core-shell nanoparticles (micelles) with control of dimensions and architecture. However, the factors that influence the rate of nanoparticle growth have not been systematically studied. Using transmission electron microscopy, small- and wide-angle X-ray scattering, and super-resolution fluorescence microscopy techniques, we have investigated the kinetics of the seeded growth of poly(ferrocenyldimethylsilane)- b-(polydimethylsiloxane) (PFS- b-PDMS), as a model living CDSA system for those employing, for example, crystallizable emissive and biocompatible polymers. By altering various self-assembly parameters including concentration, temperature, solvent, and BCP composition our results have established that the time taken to prepare fiber-like micelles via the living CDSA method can be reduced by decreasing temperature, by employing solvents that are poorer for the crystallizable PFS core-forming block, and by increasing the length of the PFS core-forming block. These results are of general importance for the future optimization of a wide variety of living CDSA systems. Our studies also demonstrate that the growth kinetics for living CDSA do not exhibit the first-order dependence of growth rate on unimer concentration anticipated by analogy with living covalent polymerizations of molecular monomers. This difference may be caused by the combined influence of chain conformational effects of the BCP on addition to the seed termini and chain length dispersity.
A detailed catalytic, stoichiometric, and mechanistic study on the dehydrocoupling of H3B·NMe2H and dehydropolymerization of H3B·NMeH2 using the [Rh(Xantphos)](+) fragment is reported. At 0.2 mol % catalyst loadings, dehydrocoupling produces dimeric [H2B-NMe2]2 and poly(methylaminoborane) (M(n) = 22,700 g mol(-1), PDI = 2.1), respectively. The stoichiometric and catalytic kinetic data obtained suggest that similar mechanisms operate for both substrates, in which a key feature is an induction period that generates the active catalyst, proposed to be a Rh-amido-borane, that reversibly binds additional amine-borane so that saturation kinetics (Michaelis-Menten type steady-state approximation) operate during catalysis. B-N bond formation (with H3B·NMeH2) or elimination of amino-borane (with H3B·NMe2H) follows, in which N-H activation is proposed to be turnover limiting (KIE = 2.1 ± 0.2), with suggested mechanisms that only differ in that B-N bond formation (and the resulting propagation of a polymer chain) is favored for H3B·NMeH2 but not H3B·NMe2H. Importantly, for the dehydropolymerization of H3B·NMeH2, polymer formation follows a chain growth process from the metal (relatively high degrees of polymerization at low conversions, increased catalyst loadings lead to lower-molecular-weight polymer), which is not living, and control of polymer molecular weight can be also achieved by using H2 (M(n) = 2,800 g mol(-1), PDI = 1.8) or THF solvent (M(n) = 52,200 g mol(-1), PDI = 1.4). Hydrogen is suggested to act as a chain transfer agent in a similar way to the polymerization of ethene, leading to low-molecular-weight polymer, while THF acts to attenuate chain transfer and accordingly longer polymer chains are formed. In situ studies on the likely active species present data that support a Rh-amido-borane intermediate as the active catalyst. An alternative Rh(III) hydrido-boryl complex, which has been independently synthesized and structurally characterized, is discounted as an intermediate by kinetic studies. A mechanism for dehydropolymerization is suggested in which the putative amido-borane species dehydrogenates an additional H3B·NMeH2 to form the "real monomer" amino-borane H2B═NMeH that undergoes insertion into the Rh-amido bond to propagate the growing polymer chain from the metal. Such a process is directly analogous to the chain growth mechanism for single-site olefin polymerization.
Ir-catalyzed (20 °C) or thermal (70 °C) dehydrocoupling of the linear diborazane MeNH(2)-BH(2)-NHMe-BH(3) led to the formation of poly- or oligoaminoboranes [MeNH-BH(2)](x) (x = 3 to >1000) via an initial redistribution process that forms MeNH(2)·BH(3) and also transient MeNH═BH(2), which exists in the predominantly metal-bound and free forms, respectively. Studies of analogous chemistry led to the discovery of metal-free hydrogenation of the B═N bond in the "model" aminoborane iPr(2)N═BH(2) to give iPr(2)NH·BH(3) upon treatment with the diborazane Me(3)N-BH(2)-NHMe-BH(3) or amine-boranes RR'NH·BH(3) (R, R' = H or Me).
The kinetics of the metal-free hydrogen transfer from amine-borane Me(2)NH·BH(3) to aminoborane iPr(2)N═BH(2), yielding iPr(2)NH·BH(3) and cyclodiborazane [Me(2)N-BH(2)](2) via transient Me(2)N═BH(2), have been investigated in detail, with further information derived from isotopic labeling and DFT computations. The approach of the system toward equilibrium was monitored in both directions by (11)B{(1)H} NMR spectroscopy in a range of solvents and at variable temperatures in THF. Simulation of the resulting temporal-concentration data according to a simple two-stage hydrogen transfer/dimerization process yielded the rate constants and thermodynamic parameters attending both equilibria. At ambient temperature, the bimolecular hydrogen transfer is slightly endergonic in the forward direction (ΔG(1)°((295)) = 10 ± 7 kJ·mol(-1); ΔG(1)(‡)((295)) = 91 ± 5 kJ·mol(-1)), with the overall equilibrium being driven forward by the subsequent exergonic dimerization of the aminoborane Me(2)N═BH(2) (ΔG(2)°((295)) = -28 ± 14 kJ·mol(-1)). Systematic deuterium labeling of the NH and BH moieties in Me(2)NH·BH(3) and iPr(2)N═BH(2) allowed the kinetic isotope effects (KIEs) attending the hydrogen transfer to be determined. A small inverse KIE at boron (k(H)/k(D) = 0.9 ± 0.2) and a large normal KIE at nitrogen (k(H)/k(D) = 6.7 ± 0.9) are consistent with either a pre-equilibrium involving a B-to-B hydrogen transfer or a concerted but asynchronous hydrogen transfer via a cyclic six-membered transition state in which the B-to-B hydrogen transfer is highly advanced. DFT calculations are fully consistent with a concerted but asynchronous process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.