We demonstrate that the Super Dual Auroral Radar Network (SuperDARN) radar at Syowa station, Antarctica, can be used to detect high frequency radio wave attenuation in the D region ionosphere during energetic electron precipitation (EEP) events. EEP‐related attenuation is identified in the radar data as a sudden reduction in the backscatter power and background noise parameters. We focus initially on EEP associated with pulsating aurora and use images from a colocated all‐sky camera as a validation data set for the radar‐based EEP event detection method. Our results show that high‐frequency attenuation that commences during periods of optical pulsating aurora typically continues for 2–4 hr after the camera stops imaging at dawn. We then use the radar data to determine EEP occurrence rates as a function of magnetic local time (MLT) using a database of 555 events detected in 2011. EEP occurrence rates are highest in the early morning sector and lowest at around 15:00–18:00 MLT. The postmidnight and morning sector occurrence rates exhibit significant seasonal variations, reaching approximately 50% in the winter and 15% in the summer, whereas no seasonal variations were observed in other MLT sectors. The mean event lifetime determined from the radar data was 2.25 hr, and 10% of events had lifetimes exceeding 5 hr.
Two solar proton events in September 2017 had a significant impact on the operation of the Super Dual Auroral Radar Network (SuperDARN), a global network of high-frequency (HF) radars designed for observing F region ionospheric plasma convection. Strong polar cap absorption caused near-total loss of radar backscatter, which prevented the primary SuperDARN data products from being determined for a period of several days. During this interval, the high-latitude and polar cap radars measured unusually low levels of background atmospheric radio noise. We demonstrate that these background noise measurements can be used to observe the spatial and temporal evolution of the polar cap absorption region, using an approach similar to riometry. We find that the temporal evolution of the SuperDARN radar-derived HF attenuation closely follows that of the cosmic noise absorption measured by a riometer. Attenuation of the atmospheric noise up to 10 dB at 12 MHz is measured within the northern polar cap, and up to 14 dB in the southern polar cap, which is consistent with the observed backscatter loss. Additionally, periods of enhanced attenuation lasting 2-4 hr are detected by the midlatitude radars in response to M-and X-class solar flares. Our results demonstrate that SuperDARN's routine measurements of atmospheric radio noise can be used to monitor 8-to 20-MHz radio attenuation from middle to polar latitudes, which may be used to supplement riometer data and also to investigate the causes of SuperDARN backscatter loss during space weather events.Plain Language Summary Solar proton events are known to cause widespread disruption to high-frequency (HF) radio communications in the high-latitude and polar regions. We demonstrate that SuperDARN HF radars may be used to monitor HF radio wave attenuation during solar proton events using routine measurements of the background radio noise. These background noise measurements are produced as part of the radar data processing, but they are not normally used for science applications. We focus on two solar proton events, which occurred in September 2017, and find that the measured radio attenuation is confined to the polar cap and exhibits temporal and spatial properties that are characteristic of polar cap absorption events. The attenuation measured by the Rankin Inlet SuperDARN radar agrees well with measurements from a nearby riometer, indicating that reasonable estimates of the HF radio attenuation can be obtained from SuperDARN radars despite the high day-to-day variability of the atmospheric radio noise. Our technique may also prove useful for determining the reasons for backscatter loss, particularly when riometer data are not available.
We report both decreasing and increasing trends in the patch sizes during pulsating aurora events. About 150 pulsating auroral events over the Fennoscandian Lapland have been successfully analyzed for their average patch size, total patch area, and number of patches as a function of event time, typically 1-2 hr. An automatic routine has been developed to detect patches in the all-sky camera images. In addition to events with decreasing and increasing average patch size evolution over the course of the pulsating aurora, events with no size trends and events with intermittently increasing and decreasing patch size trends were also found. In this study, we have analyzed a subset of events for which the average and total patch size systematically increase or decrease. The events with increasing patch size trend do not experience a decrease in the peak emission height, which was previously associated with the behavior of pulsating aurora precipitation. Furthermore, the events with increasing patch sizes have shorter lifetimes and twice as many substorm-injected energetic electrons at geosynchronous orbit as the events with decreasing patch sizes. Half of the events with increasing patch sizes occur during substorm expansion phases, while a majority (64%) of the ones with decreasing patch sizes take place during the recovery phase. These findings suggest that the visual appearance of pulsating aurora may be used as an indication of the pulsating aurora energy deposition to the atmosphere.
Solar proton events (SPEs) cause large‐scale ionization in the middle atmosphere leading to ozone loss and changes in the energy budget of the middle atmosphere. The accurate implementation of SPEs and other particle ionization sources in climate models is necessary to understand the role of energetic particle precipitation in climate variability. We use riometer observations from 16 riometer stations and the Whole Atmosphere Community Climate Model with added D region ion chemistry (WACCM‐D) to study the spatial and temporal extent of cosmic noise absorption (CNA) during 62 SPEs from 2000 to 2005. We also present a correction method for the nonlinear response of observed CNA during intense absorption events. We find that WACCM‐D can reproduce the observed CNA well with some need for future improvement and testing of the used energetic particle precipitation forcing. The average absolute difference between the model and the observations is found to be less than 0.5 dB poleward of about 66° geomagnetic latitude, and increasing with decreasing latitude to about 1 dB equatorward of about 66° geomagnetic latitude. The differences are largest during twilight conditions where the modeled changes in CNA are more abrupt compared to observations. An overestimation of about 1° to 3° geomagnetic latitude in the extent of the CNA is observed due to the fixed proton cutoff latitude in the model. An unexplained underestimation of CNA by the model during sunlit conditions is observed at stations within the polar cap during 18 of the studied events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.