Artificial intelligence (AI) models for decision support have been developed for clinical settings such as radiology, but little work evaluates the potential impact of such systems. In this study, physicians received chest X-rays and diagnostic advice, some of which was inaccurate, and were asked to evaluate advice quality and make diagnoses. All advice was generated by human experts, but some was labeled as coming from an AI system. As a group, radiologists rated advice as lower quality when it appeared to come from an AI system; physicians with less task-expertise did not. Diagnostic accuracy was significantly worse when participants received inaccurate advice, regardless of the purported source. This work raises important considerations for how advice, AI and non-AI, should be deployed in clinical environments.
Current deep CNN architectures can be trained with modest-sized medical data sets to achieve clinically useful performance at detecting and excluding common pathology on chest radiographs.
Medical datasets are often highly imbalanced with overrepresentation of common medical problems and a paucity of data from rare conditions. We propose simulation of pathology in images to overcome the above limitations. Using chest X-rays as a model medical image, we implement a generative adversarial network (GAN) to create artificial images based upon a modest sized labeled dataset. We employ a combination of real and artificial images to train a deep convolutional neural network (DCNN) to detect pathology across five classes of chest X-rays. Furthermore, we demonstrate that augmenting the original imbalanced dataset with GAN generated images improves performance of chest pathology classification using the proposed DCNN in comparison to the same DCNN trained with the original dataset alone. This improved performance is largely attributed to balancing of the dataset using GAN generated images, where image classes that are lacking in example images are preferentially augmented.Index Terms-Chest X-ray, data augmentation, deep convolutional neural network (DCNN), generative adversarial network (GAN), simulated images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.