Gender-related differences in brown adipose tissue (BAT) thermogenesis of 110-day-old rats were studied by determining the morphological and functional features of BAT. The adrenergic control was assessed by studying the levels of  3 -and ␣ 2A -adrenergic receptors (AR) and by determining the lipolytic response to norepinephrine ( 1 -,  2 -,  3 -, and ␣ 2 -AR agonist), isoprenaline ( 1 -,  2 -, and  3 -AR agonist), and CGP12177A (selective partial  3 -AR agonist but  1 -and  2 -AR antagonist) together with post-receptor agents, forskolin and dibutyryl cyclic AMP. The female rats that had greater oxygen consumption showed higher UCP1 content, a higher multilocular arrangement, and both longer cristae and higher cristae dense mitochondria in BAT indicating heightened thermogenic capacity and activity; this picture is accompanied by a more sensitive  3 -AR to norepinephrine signal (EC 50 10-fold lower for CGP12177A) and a lower expression of ␣ 2A -AR than male rats. Taken together, our results support the idea that the BAT hormonal environment could be involved in the control of different elements of lipolytic and thermogenic adrenergic pathways. Gender dimorphism is both at receptor (changing ␣ 2A -AR density and  3 -AR affinity) and post-receptor (modulating the links involved in the adrenergic signal transduction) levels. These changes in adrenergic control could be responsible, at least in part, both for the important mitochondrial recruitment differences and functional and morphological features of BAT in female rats under usual rodent housing temperatures.
Gender-related differences in the brown adipose tissue (BAT) response to overfeeding rats on a cafeteria diet were studied by assessing the balance between the expression of beta-adrenoceptors (beta1-, beta2-, beta3-AR) and alpha2A-AR and their relation to the expression of uncoupling proteins (UCP1, UCP2, UCP3). Cafeteria diet feeding for 15 days, which involved a similar degree of hyperphagia in both sexes, led to a greater body weight excess in females than in males and a lower activation of thermogenesis. Gender-related differences were found for different adrenoceptor expression and protein levels, which might explain, in part, sex differences in the thermogenic parameters. The lower expression of alpha2A-AR in females than in males could be responsible for the higher expression of UCP1 and thermogenic capacity under non-hyperphagic conditions. However, in a situation of high adrenergic stimulation--as occurs with overfeeding--as there is a preferential recruitment of the beta3-AR by noradrenaline compared with other adrenergic receptors, the higher levels of beta3-AR in males rats than in females could be responsible for the greater thermogenic capacity and the lesser weight gain in males. Thus, the alpha2/beta3 balance in BAT could be a key in the thermogenic control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.