The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA(1)B(2)C(6)D(1)E(1)) and a 61-nucleotide CRISPR RNA (crRNA) with 5'-hydroxyl and 2',3'-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA.
Prokaryotes have evolved multiple versions of an RNA-guided adaptive immune system that targets foreign nucleic acids. In each case, transcripts derived from clustered regularly interspaced short palindromic repeats (CRISPRs) are thought to selectively target invading phage and plasmids in a sequence-specific process involving a variable cassette of CRISPR-associated ( cas ) genes. The CRISPR locus in Pseudomonas aeruginosa (PA14) includes four cas genes that are unique to and conserved in microorganisms harboring the Csy-type (CRISPR system yersinia) immune system. Here we show that the Csy proteins (Csy1–4) assemble into a 350 kDa ribonucleoprotein complex that facilitates target recognition by enhancing sequence-specific hybridization between the CRISPR RNA and complementary target sequences. Target recognition is enthalpically driven and localized to a “seed sequence” at the 5′ end of the CRISPR RNA spacer. Structural analysis of the complex by small-angle X-ray scattering and single particle electron microscopy reveals a crescent-shaped particle that bears striking resemblance to the architecture of a large CRISPR-associated complex from Escherichia coli , termed Cascade. Although similarity between these two complexes is not evident at the sequence level, their unequal subunit stoichiometry and quaternary architecture reveal conserved structural features that may be common among diverse CRISPR-mediated defense systems.
Summary The CRISPR-Cas system is a prokaryotic host defense system against genetic elements. The Type III-B CRISPR-Cas system of the bacterium Thermus thermophilus, the TtCmr complex, is composed of six different protein subunits (Cmr1-6) and one crRNA with a stoichiometry of Cmr112131445361:crRNA1. The TtCmr complex co-purifies with crRNA species of 40 and 46 nt, originating from a distinct subset of CRISPR loci and spacers. The TtCmr complex cleaves the target RNA at multiple sites with 6 nt intervals via a 5’ ruler mechanism. Electron microscopy revealed that the structure of TtCmr resembles a ‘sea worm’ and is composed of a Cmr2-3 heterodimer ‘tail’, a helical backbone of Cmr4 subunits capped by Cmr5 subunits, and a curled ‘head’ containing Cmr1 and Cmr6. Despite having a backbone of only four Cmr4 subunits and being both longer and narrower, the overall architecture of TtCmr resembles that of Type I Cascade complexes.
Traditionally, mass spectrometry has been a powerful analytical method enabling the structural analysis of small molecules, and later on peptides and proteins. With the advent of native mass spectrometry, using a combination of electrospray ionisation and time of flight analysis, mass spectrometry could also be applied to the mass determination of large protein complexes such as ribosomes and whole viruses. More recently, ion mobility has been coupled to mass spectrometry providing a new dimension in the analysis of biomolecules, with ion mobility separating ions according to differences in size and shape. In the context of native mass spectrometry, ion mobility mass spectrometry opens up avenues for the detailed structural analysis of large and heterogeneous protein complexes, providing information on the stoichiometry, topology and cross section of these assemblies and their composite subunits. With these characteristics, ion mobility mass spectrometry offers a complementary tool in the context of structural biology. Here, we critically review the development, instrumentation, approaches and applications of ion mobility in combination with mass spectrometry, focusing on the analysis of larger proteins and protein assemblies (185 references).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.