The effects of P substitution for Si as an n-type dopant on the thermoelectric properties of hot-pressed β-FeSi2 were investigated. The Seebeck coefficient, electrical resistivity, and thermal conductivity of the FeSi2−xPx were measured from room temperature to 1100 K, and then the power factor and figure of merit were evaluated. The Seebeck coefficient of the hot-pressed FeSi2−xPx was negative, indicating that P atoms were definitely substituted for Si atoms as an n-type dopant in the β phase. The samples with x=0.02 and 0.04 had a Seebeck coefficient greater than that of the conventional hot-pressed Fe0.98Co0.02Si2 below 800 K. The electrical resistivity was significantly reduced by P doping, especially in the lower temperature range, and slightly decreased with increasing P content. The log ρ−1/T plots of the P-doped samples exhibited a specific behavior below 480 K, which was not observed in the case of the nondoped sample. The thermal conductivity of the P-doped sample was smaller than that of the nondoped sample in spite of the larger amount of the metallic ε phase. The figure of merit was significantly enhanced by P doping as compared with that of the nondoped β-FeSi2, and a high thermoelectric performance, almost the same as that of the conventional Fe0.98Co0.02Si2, was obtained by P doping into β-FeSi2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.