Macaque monkeys were shown retinotopically-specific visual stimuli during 14C-2-deoxy-d-glucose (DG) infusion in a study of the retinotopic organization of primary visual cortex (V1). In the central half of V1, the cortical magnification was found to be greater along the vertical than along the horizontal meridian, and overall magnification factors appeared to be scaled proportionate to brain size across different species. The cortical magnification factor (CMF) was found to reach a maximum of about 15 mm/deg at the representation of the fovea, at a point of acute curvature in the V1-V2 border. We find neither a duplication nor an overrepresentation of the vertical meridian. The magnification factor did not appear to be doubled in a direction perpendicular to the ocular dominance strips; it may not be increased at all. The DG borders in parvorecipient layer 4Cb were found to be as sharp as 140 micron (half-amplitude, half width), corresponding to a visual angle of less than 2' of arc at the eccentricity measured. In other layers (including magnorecipient layer 4Ca), the retinotopic borders are broader. The retinotopic spread of activity is greater when produced by a low-spatial-frequency grating than when produced by a high-spatial-frequency grating. Orientation-specific stimuli produced a pattern of activation that spread further than 1 mm across cortex in some layers. Some DG evidence suggests that the spread of functional activity is greater near the foveal representation than near 5 degrees eccentricity.
We have anatomically analyzed retinotopic organization using the 14C-labeled 2-deoxy-D-glucose method. The method has several advantages over conventional electrophysiological mapping techniques. In the striate cortex, the anatomical substrate for retinotopic organization is surprisingly well ordered, and there seems to be a systematic relationship between ocular dominance strips and cortical magnification. The 2-deoxyglucose maps in this area appear to be largely uninfluenced by known differences in long-term metabolic activity. This method should prove useful in analyzing retinotopic organization in various visual areas of the brain and in different species.
When macaque monkeys view achromatic, sinusoidal gratings of a single spatial frequency, the pattern of 14C-2-deoxy-d-glucose (DG) uptake produced by the gratings is shown to depend on the spatial frequency chosen. When a relatively high (5-7 cycles/deg) spatial frequency is shown binocularly at systematically varied orientations, uptake in parafoveal striate cortex is highest between the cytochrome oxidase blobs (that is, in the interblobs) in layers 1, 2, and 3. In layers 4B, 5, and 6, where the cytochrome oxidase blobs are faint or absent, DG uptake is highest in a periodic pattern that lies in register with the interblobs of layers 2 + 3. When the grating is, instead, of relatively low (1-1.5 cycles/deg) spatial frequency, DG uptake is highest in the blobs, in the blob-aligned portions of layers 1-4B, and in the lower-layer blobs as well. These variations in DG topography are confirmed in stimulus comparisons within a single hemisphere. Presumably, this shift in functional topography within the extra-granular layer is the primate homolog of "spatial frequency columns" shown earlier in the cat (Tootell et al., 1981; Silverman, 1984). In the well-differentiated architecture of primate striate cortex, laminar differences produced by high- versus low-spatial-frequency gratings are visible as well. Gratings of very high spatial frequency produce much higher uptake in 4Cb (which receives input from the parvocellular LGN layers) than in 4Ca (which gets its input from the magnocellular LGN layers). Gratings of low spatial frequency produce the converse result. Presumably, cells in the magnocellular LGN layers and/or in the magnocellular-dominated layer 4Ca have lower average spatial frequency tuning (larger receptive fields) than their counterparts in the parvocellular LGN and/or in striate layer 4Cb. The DG patterns produced by various spatial frequencies also vary with eccentricity, in a manner consistent with known, eccentricity-dependent variations of receptive-field size and spatial frequency tuning. Thus, gratings of a "middle"-spatial-frequency range (4-5 cycles/deg) produce high uptake in the blobs near the foveal representation and high uptake in the interblobs at more peripheral eccentricities, including 5 degrees. This shift in DG topography also includes the transition zone near 3 degrees, where the level of stimulus-driven uptake is as high in the blob regions as it is in interblob regions. Variations in uptake between layers 4Ca and 4Cb, as a function of eccentricity, shift in parallel with the changes in the upper-layer topography.
The contrast dependence of simultaneous masking has been measured using isochromatic yellow-black luminance sinusoids and isoluminant red-green chrominance gratings. Masking functions for all four combinations of chromatic and luminance masks and tests are reported. In the two same-on-same conditions (luminance mask/luminance test and chromatic mask/chromatic test) these functions (increment threshold contrast versus mask contrast) have the typical dipper shape and are almost identical when test and mask contrasts are normalized to the unmasked contrast thresholds. The contrast dependence of the luminance mask/color test and color mask/luminance test functions are quite different. The luminance mask/color test shows facilitation over a broad range of both subthreshold and suprathreshold contrasts of the luminance mask. In the color mask/luminance test condition facilitation is never observed, but at suprathreshold contrasts a 2-cycle/degree (c/deg) chromatic grating masks a 2-c/deg luminance grating as strongly as does a luminance mask. The luminance mask/chromatic test results are invariant over the 0.25-2-c/deg spatial-frequency range, whereas the robust masking of luminance by color at 2 c/deg diminishes at lower spatial frequencies. The spatial-frequency selectivity of the luminance-facilitates-color interaction is much broader than facilitatory interactions in either the color-color or luminance-luminance conditions. Possible mechanisms of color-luminance interactions are considered. The lack of facilitation in the color mask/luminance test condition precludes a simple pedestal interpretation of this masking interaction. The data are, however, consistent with models that invoke inhibitory or more elaborate excitatory masking interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.