Training a conventional automatic speech recognition (ASR) system to support multiple languages is challenging because the subword unit, lexicon and word inventories are typically language specific. In contrast, sequence-to-sequence models are well suited for multilingual ASR because they encapsulate an acoustic, pronunciation and language model jointly in a single network. In this work we present a single sequence-to-sequence ASR model trained on 9 different Indian languages, which have very little overlap in their scripts. Specifically, we take a union of language-specific grapheme sets and train a grapheme-based sequence-to-sequence model jointly on data from all languages. We find that this model, which is not explicitly given any information about language identity, improves recognition performance by 21% relative compared to analogous sequence-to-sequence models trained on each language individually. By modifying the model to accept a language identifier as an additional input feature, we further improve performance by an additional 7% relative and eliminate confusion between different languages.
Sequence-to-sequence models provide a simple and elegant solution for building speech recognition systems by folding separate components of a typical system, namely acoustic (AM), pronunciation (PM) and language (LM) models into a single neural network. In this work, we look at one such sequence-to-sequence model, namely listen, attend and spell (LAS) [1], and explore the possibility of training a single model to serve different English dialects, which simplifies the process of training multi-dialect systems without the need for separate AM, PM and LMs for each dialect. We show that simply pooling the data from all dialects into one LAS model falls behind the performance of a model fine-tuned on each dialect. We then look at incorporating dialect-specific information into the model, both by modifying the training targets by inserting the dialect symbol at the end of the original grapheme sequence and also feeding a 1-hot representation of the dialect information into all layers of the model. Experimental results on seven English dialects show that our proposed system is effective in modeling dialect variations within a single LAS model, outperforming a LAS model trained individually on each of the seven dialects by 3.1~16.5% relative.
Multilingual end-to-end (E2E) models have shown great promise in expansion of automatic speech recognition (ASR) coverage of the world's languages. They have shown improvement over monolingual systems, and have simplified training and serving by eliminating language-specific acoustic, pronunciation, and language models. This work presents an E2E multilingual system which is equipped to operate in low-latency interactive applications, as well as handle a key challenge of real world data: the imbalance in training data across languages. Using nine Indic languages, we compare a variety of techniques, and find that a combination of conditioning on a language vector and training language-specific adapter layers produces the best model. The resulting E2E multilingual model achieves a lower word error rate (WER) than both monolingual E2E models (eight of nine languages) and monolingual conventional systems (all nine languages).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.