The coronavirus disease 2019 pandemic has posed severe threats to humans and the geoenvironment. The findings of severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) traces in waste water and the practice of disinfecting outdoor spaces in several cities in the world, which can result into the entry of disinfectants and their by-products into storm drainage systems and their subsequent discharge into rivers and coastal waters, raise the issue of environmental, ecological and public health effects. The aims of the current paper are to investigate the potential of water and waste water to operate as transmission routes for Sars-CoV-2 and the risks of this to public health and the geoenvironment. Additionally, several developing countries are characterised by low water-related disaster resilience and low household water security, with measures for protection of water resources and technologies for clean water and sanitation being substandard or not in place. To mitigate the impact of the pandemic in such cases, practical recommendations are provided herein. The paper calls for the enhancement of research into the migration mechanisms of viruses in various media, as well as in the formation of trihalomethanes and other disinfectant by-products in the geoenvironment, in order to develop robust solutions to combat the effects of the current and future pandemics.
Changes in climate, land use, and land management impact the occurrence and severity of wildland fires in many parts of the world. This is particularly evident in Europe, where ongoing changes in land use have strongly modified fire patterns over the last decades. Although satellite data by the European Forest Fire Information System provide large-scale wildland fire statistics across European countries, there is still a crucial need to collect and summarize in-depth local analysis and understanding of the wildland fire condition and associated challenges across Europe. This article aims to provide a general overview of the current wildland fire patterns and challenges as perceived by national representatives, supplemented by national fire statistics (2009–2018) across Europe. For each of the 31 countries included, we present a perspective authored by scientists or practitioners from each respective country, representing a wide range of disciplines and cultural backgrounds. The authors were selected from members of the COST Action “Fire and the Earth System: Science & Society” funded by the European Commission with the aim to share knowledge and improve communication about wildland fire. Where relevant, a brief overview of key studies, particular wildland fire challenges a country is facing, and an overview of notable recent fire events are also presented. Key perceived challenges included (1) the lack of consistent and detailed records for wildland fire events, within and across countries, (2) an increase in wildland fires that pose a risk to properties and human life due to high population densities and sprawl into forested regions, and (3) the view that, irrespective of changes in management, climate change is likely to increase the frequency and impact of wildland fires in the coming decades. Addressing challenge (1) will not only be valuable in advancing national and pan-European wildland fire management strategies, but also in evaluating perceptions (2) and (3) against more robust quantitative evidence.
Ahead of Print articles will move to that issue's Table of Contents. When the article is published in a journal issue, the full reference should be cited in addition to the DOI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.