Our extensive experimental results on two well-established public benchmark datasets demonstrate that our method is more effective than other state-of-the-art methods for skin lesion segmentation.
The segmentation of skin lesions in dermoscopic images is a fundamental step in automated computer-aided diagnosis of melanoma. Conventional segmentation methods, however, have difficulties when the lesion borders are indistinct and when contrast between the lesion and the surrounding skin is low. They also perform poorly when there is a heterogeneous background or a lesion that touches the image boundaries; this then results in under- and oversegmentation of the skin lesion. We suggest that saliency detection using the reconstruction errors derived from a sparse representation model coupled with a novel background detection can more accurately discriminate the lesion from surrounding regions. We further propose a Bayesian framework that better delineates the shape and boundaries of the lesion. We also evaluated our approach on two public datasets comprising 1100 dermoscopic images and compared it to other conventional and state-of-the-art unsupervised (i.e., no training required) lesion segmentation methods, as well as the state-of-the-art unsupervised saliency detection methods. Our results show that our approach is more accurate and robust in segmenting lesions compared to other methods. We also discuss the general extension of our framework as a saliency optimization algorithm for lesion segmentation.
The segmentation of abnormal regions on dermoscopic images is an important step for automated computer aided diagnosis (CAD) of skin lesions. Recent methods based on fully convolutional networks (FCN) have been very successful for dermoscopic image segmentation. However, they tend to overfit to the visual characteristics that are present in the dominant non-melanoma studies and therefore, perform poorly on the complex visual characteristics exhibited by melanoma studies, which usually consists of fuzzy boundaries and heterogeneous textures. In this paper, we propose a new method for automated skin lesion segmentation that overcomes these limitations via a novel deep class-specific learning approach which learns the important visual characteristics of the skin lesions of each individual class (melanoma vs non-melanoma) on an individual basis. We also introduce a new probability-based, step-wise integration to combine complementary segmentation results derived from individual class-specific learning models. We achieved an average Dice coefficient of 85.66% on the ISBI 2017 Skin Lesion Challenge (SLC), 91.77% on the ISBI 2016 SLC and 92.10% on the PH2 datasets with corresponding Jaccard indices of 77.73%, 85.92% and 85.90%, respectively, for the same datasets. Our
The segmentation of skin lesions in dermoscopic images is considered as one of the most important steps in computer-aided diagnosis (CAD) for automated melanoma diagnosis. Existing methods, however, have problems with over-segmentation and do not perform well when the contrast between the lesion and its surrounding skin is low. Hence, in this study, we propose a new automated saliency-based skin lesion segmentation (SSLS) that we designed to exploit the inherent properties of dermoscopic images, which have a focal central region and subtle contrast discrimination with the surrounding regions. The proposed method was evaluated on a public dataset of lesional dermoscopic images and was compared to established methods for lesion segmentation that included adaptive thresholding, Chan-based level set and seeded region growing. Our results show that SSLS outperformed the other methods in regard to accuracy and robustness, in particular, for difficult cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.