Woloszynskia species are dinoflagellates in the order Suessiales inhabiting marine or freshwater environments; their ecophysiology has not been well investigated, in particular, their trophic modes have yet to be elucidated. Previous studies have reported that all Woloszynskia species are photosynthetic, although their mixotrophic abilities have not been explored. We isolated a dinoflagellate from coastal waters in western Korea and established clonal cultures of this dinoflagellate. On the basis of morphology and analyses of the small/large subunit rRNA gene (GenBank accession number=FR690459), we identified this dinoflagellate as Woloszynskia cincta. We further established that this dinoflagellate is a mixotrophic species. We found that W. cincta fed on algal prey using a peduncle. Among the diverse prey provided, W. cincta ingested those algal species that had equivalent spherical diameters (ESDs) ≤12.6 μm, exceptions being the diatom Skeletonema costatum and the dinoflagellate Prorocentrum minimum. However, W. cincta did not feed on larger algal species that had ESDs≥15 μm. The specific growth rates for W. cincta increased continuously with increasing mean prey concentration before saturating at a concentration of ca. 134 ng C/ml (1,340 cells/ml) when Heterosigma akashiwo was used as food. The maximum specific growth rate (i.e. mixotrophic growth) of W. cincta feeding on H. akashiwo was 0.499 d(-1) at 20 °C under illumination of 20 μE/m(2) /s on a 14:10 h light-dark cycle, whereas its growth rate (i.e. phototrophic growth) under the same light conditions without added prey was 0.040 d(-1). The maximum ingestion and clearance rates of W. cincta feeding on H. akashiwo were 0.49 ng C/grazer/d (4.9 cells/grazer/d) and 1.9 μl/grazer/h, respectively. The calculated grazing coefficients for W. cincta on co-occurring H. akashiwo were up to 1.1 d(-1). The results of the present study suggest that grazing by W. cincta can have a potentially considerable impact on prey algal populations.
To develop an easy and rapid method of quantifying lipid contents of marine dinoflagellates, we quantified lipid contents of common dinoflagellate species using a colorimetric method based on the sulpho-phospho-vanillin reaction. In this method, the optical density measured using a spectrophotometer was significantly positively correlated with the known lipid content of a standard oil (Canola oil). When using this method, the lipid content of each of the dinoflagel-lates Alexandrium minutum, Prorocentrum micans, P. minimum, and Lingulodinium polyedrum was also significantly positively correlated with the optical density and equivalent intensity of color. Thus, when comparing the color intensity or the optical density of a sample of a microalgal species with known color intensities or optical density, the lipid content of the target species could be rapidly quantified. Furthermore, the results of the sensitivity tests showed that only 1-3 × 10 5 cells of P. minimum and A. minutum, 10 4 cells of P. micans, and 10 3 cells of L. polyedrum (approximately 1-5 mL of dense cultures) were needed to determine the lipid content per cell. When the lipid content per cell of 9 dinoflagellates, a dia-tom, and a chlorophyte was analyzed using this method, the lipid content per cell of these microalgae, with the exception of the diatom, were significantly positively correlated with cell size, however, volume specific lipid content per cell was negatively correlated with cell size. Thus, this sulpho-phospho-vanillin method is an easy and rapid method of quantifying the lipid content of autotrophic, mixotrophic, and heterotrophic dinoflagellate species.
Coolia spp. are epiphytic and benthic dinoflagellates. Herein, we report for the first time, the occurrence of Coolia canariensis and Coolia malayensis in Korean waters. The morphology of the Korean strains of C. canariensis and C. malayensis isolated from the waters off Jeju Island, Korea was similar to that of the original Canary lslands strains and Malaysian strains, respectively. We found several pores and a line of small knobs on the pore plate, and perforations within the large pores of both C. canariensis and C. malayensis. The plates of the Korean strains of C. canariensis and C. malayensis were arranged in a Kofoidian series of Po, 3', 7'', 6c, 6s, 5''', and 2'''', and Po, 3', 7'', 7c, 6-7s, 5''', and 2'''', respectively. When properly aligned, the large subunit (LSU) rDNA sequence of the Korean strain of C. canariensis was identical to that of the Biscayan strains, but it was 2-3% different from the Canary lslands strain VGO0775 and the Australian strain. In addition, the sequences of small subunit (SSU) and/or LSU rDNA from the two Korean strains of C. malayensis were < 1% different from the Malaysian strains of C. malayensis and the Florida strain CCMP1345 and New Zealand strain CAWD39 ("Coolia monotis"). In phylogenetic trees based on LSU rDNA sequences, the Korean strains of C. malayensis belonged to a clade including the Malaysian strains and these two strains. Therefore, based on genealogical analyses, we suggest that the Korean strain of C. canariensis is closely related to two Atlantic strains and the Australian strain, whereas the Korean strains of C. malayensis are related to the Malaysian strains of C. malayensis and the Florida and New Zealand strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.