Energy-resolved collision-induced dissociation experiments using tandem mass spectrometry are reported for an phenylpalladium N-heterocyclic carbene (NHC) complex. Reductive elimination of an NHC ligand as a phenylimidazolium ion involves a barrier of 30.9(14) kcal mol(-1), whereas competitive ligand dissociation requires 47.1(17) kcal mol(-1). The resulting three-coordinate palladium complex readily undergoes reductive C-C coupling to give the phenylimidazolium pi complex, for which the binding energy was determined to be 38.9(10) kcal mol(-1). Density functional calculations at the M06-L//BP86/TZP level of theory are in very good agreement with experiment. In combination with RRKM modeling, these results suggest that the rate-determining step for the direct reductive elimination process switches from the C-C coupling step to the fragmentation of the resulting sigma complex at low activation energy.
Herein, we report the preparation of small and narrowly distributed (2.1 ± 0.5 nm) Ag nanoparticles supported on passivated silica, where the surface OH groups are replaced by OSiMe3 functionalities. This synthetic method involves the grafting of silver(I) bis(trimethylsilyl)amide ([AgN(SiMe3)2]4) on silica partially dehydroxylated at 700 °C, followed by a thermal treatment of the grafted complex under H2. The catalytic performance of this material was investigated in the semi-hydrogenation of propyne and 1-hexyne and compared with that of 2.0 ± 0.3 nm Ag nanoparticles supported on silica. Whilst surface passivation slightly decreases the activity in both reactions (by a factor 2-3), probably as a result of the decreased alkyne adsorption properties or the presence of less accessible active sites on the passivated support, the AgNP@SiO2 catalysts demonstrate a remarkable selectivity for the production of alkenes.
An improved method for deconvoluting energy-resolved collision-induced dissociation cross sections yields ligand binding energies for organometallic complexes with substantially less prior information than before. Application to isomeric 2:1 complexes of azabox ligands with Cu(I) gives consistent results for the binding energies of the ligands to homo- and heterochiral complexes with pseudo-enantiomeric ligands for cases where previous deconvolution methods had failed to give satisfactory results.
Absolute ligand binding energies are determined for the 2:1 complexes of bis-oxazoline ligands and Cu(I) in the gas phase by the fitting of energy-resolved collision-induced dissociation cross sections. The complexes were chosen for their occurrence in asymmetric catalysis for which the phenomenon of nonlinear effects is explained by differences in stability for homochiral and heterochiral complexes. Pseudo-enantiomeric ligands are used so that mass spectrometric measurements can be employed. The measurements find that the sterically similar, but electronically different, isopropyl versus phenyl substituents lead to a different stability ordering of the homo- versus heterochiral complexes, which then leads to the prediction of nonlinear effects in asymmetric catalysis by the complexes with isopropyl-substituted ligands. The origin of the difference in stability order is found in noncovalent interactions between the phenyl groups on the ligands, which are poorly described by DFT calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.