T cells require continual presence of extrinsic signals from their in vivo microenvironment to maintain viability. T cells removed from these signals and placed in tissue culture atrophied and died in a caspase-independent manner. Atrophy was characterized by smaller cell sizes, delayed mitogenic responses, and decreased glycolytic rate. Bcl-2 expression remained constant in vitro despite ongoing cell death, indicating that endogenous Bcl-2 expression is insufficient to explain the life span and size control of lymphocytes in vivo and that cell-extrinsic signals provided may be required to maintain both cell viability and size in vivo. One such signal, IL-7, was found to maintain both the size and survival of neglected T cells in vitro. IL-7 was not unique, because the common γ-chain cytokines IL-2, IL-4, and IL-15, as well as the gp130 cytokine IL-6, also promoted both T cell survival and size maintenance. IL-7 did not induce resting T cells to proliferate. Instead, IL-7 stimulated neglected T cells to maintain their metabolic rate at levels comparable to freshly isolated cells. The survival and trophic effects of IL-7 could be separated because IL-7 was able to promote up-regulation of Bcl-2 and maintain cell viability independent of phosphatidylinositol 3-kinase and mammalian target of rapamycin activity but was unable to prevent cellular atrophy when phosphatidylinositol 3-kinase and mammalian target of rapamycin were inhibited. These data demonstrate that T cells require the continuous presence of extrinsic signals not only to survive but also to maintain their size, metabolic activity, and the ability to respond rapidly to mitogenic signals.
Background A significant fraction of patients with coronavirus disease 2019 (COVID-19) display abnormalities in renal function. Retrospective studies of patients hospitalized with COVID-19 in Wuhan, China, report an incidence of 3%-7% progressing to ARF, a marker of poor prognosis. The cause of the renal failure in COVID-19 is unknown, but one hypothesized mechanism is direct renal infection by the causative virus, SARS-CoV-2.Methods We performed an autopsy on a single patient who died of COVID-19 after open repair of an aortic dissection, complicated by hypoxic respiratory failure and oliguric renal failure. We used light and electron microscopy to examine renal tissue for evidence of SARS-CoV-2 within renal cells.Results Light microscopy of proximal tubules showed geographic isometric vacuolization, corresponding to a focus of tubules with abundant intracellular viral arrays. Individual viruses averaged 76 mm in diameter and had an envelope studded with crown-like, electron-dense spikes. Vacuoles contained double-membrane vesicles suggestive of partially assembled virus. ConclusionsThe presence of viral particles in the renal tubular epithelium that were morphologically identical to SARS-CoV-2, and with viral arrays and other features of virus assembly, provide evidence of a productive direct infection of the kidney by SARS-CoV-2. This finding offers confirmatory evidence that direct renal infection occurs in the setting of AKI in COVID-19. However, the frequency and clinical significance of direct infection in COVID-19 is unclear. Tubular isometric vacuolization observed with light microscopy, which correlates with double-membrane vesicles containing vacuoles observed with electronic microscopy, may be a useful histologic marker for active SARS-CoV-2 infection in kidney biopsy or autopsy specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.