The mechanistic basis of gliogenesis, which occurs late in human development, is poorly understood. Here we identify nuclear factor IA (NFIA) as a molecular switch for inducing human glial competency. Transient expression of NFIA is sufficient to trigger glial competency of human pluripotent stem cell-derived neural stem cells within 5 days and to convert these cells into astrocytes in the presence of glial-promoting factors, compared to 3–6 months using current protocols. NFIA-induced astrocytes promote synaptogenesis, exhibit neuroprotective properties, display calcium transients in response to appropriate stimuli, and engraft in the adult mouse brain. Differentiation involves rapid but reversible chromatin remodeling, GFAP promoter demethylation, and a striking lengthening of the G1 cell cycle phase. Genetic or pharmacological manipulation of G1 length partially mimics NFIA function. We use the approach to generate astrocytes with region-specific or reactive features. Our study defines key mechanisms of the gliogenic switch and enables the rapid production of human astrocytes for disease modeling and regenerative medicine.
BackgroundSmall bowel obstruction (SBO) is characterized by a high rate of recurrence. In the present study, we aimed to compare the outcomes of patients managed either by conservative treatment or surgical operation for an episode of SBO.MethodsThe outcomes of all patients hospitalized at a single center for acute SBO between 2004 and 2007 were assessed. The occurrence of recurrent hospitalization, surgery, SBO symptoms at home, and mortality was determined.ResultsAmong 221 patients admitted with SBO, 136 underwent a surgical procedure (surgical group) and 85 were managed conservatively (conservative group). Baseline characteristics were similar between treatment groups. The median follow-up time (interquartile range) was 4.7 (3.7–5.8) years. Nineteen patients (14.0 %) of the surgical group were hospitalized for recurrent SBO versus 25 (29.4 %) of the conservative group [hazard ratio (HR), 0.5; 95 % CI, 0.3–0.9]. The need for a surgical management of a new SBO episode was similar between the two groups, ten patients (7.4 %) in the surgical group and six patients (7.1 %) in the conservative group (HR, 1.1; 95 % CI, 0.4–3.1). Five-year mortality from the date of hospital discharge was not significantly different between the two groups (age- and sex-adjusted HR, 1.1; 95 % CI, 0.6–2.1). A follow-up evaluation was obtained for 130 patients. Among them, 24 patients (34.8 %) of the surgical group and 35 patients (57.4 %) of the conservative group had recurrent SBO symptoms (odds ratio, 0.4; 95 % CI, 0.2–0.8).ConclusionsThe recurrence of SBO symptoms and new hospitalizations were significantly lower after surgical management of SBO compared with conservative treatment.Electronic supplementary materialThe online version of this article (doi:10.1007/s00268-014-2733-6) contains supplementary material, which is available to authorized users.
Pluripotent stem cell (PSC)-based cell therapy is an attractive concept for neurodegenerative diseases, but can lead to tumor formation. This is particularly relevant as proliferating neural precursors rather than postmitotic mature neurons need to be transplanted. Thus, safety mechanisms to eliminate proliferating cells are needed. Here, we propose a suicide gene approach, based on cell cycle-dependent promoter Ki67-driven expression of herpes simplex virus thymidine kinase (HSV-TK). We generated a PSC line expressing this construct and induced neural differentiation. In vitro, proliferating PSC and early neural precursor cells (NPC) were killed by exposure to ganciclovir. In vivo, transplantation of PSC led to tumor formation, which was prevented by early ganciclovir treatment. Transplanted NPC did not lead to tumor formation and their survival and neural maturation were not affected by ganciclovir. In conclusion, the cell cycle promoter-driven suicide gene approach described in this study allows killing of proliferating undifferentiated precursor cells without expression of the suicide gene in mature neurons. This approach could also be of use for other stem cell-based therapies where the final target consists of postmitotic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.