It has been proposed that the detection of frequency modulation (FM) of sinusoidal carriers can be mediated by two mechanisms: a place mechanism based on FM-induced amplitude modulation (AM) in the excitation pattern, and a temporal mechanism based on phase-locking in the auditory nerve. The temporal mechanism appears to be "sluggish" and does not play a role for FM rates above about 10 Hz. It also does not play a role for high carrier frequencies (above about 5 kHz). This experiment examined FM detection in three young subjects with normal hearing and four elderly subjects with cochlear hearing loss. Carrier frequencies were 0.25, 0.5, 1, 2, 4, and 6 kHz and modulation rates were 2, 5, 10, and 20 Hz. FM detection thresholds were measured both in the absence of AM, and with AM of a fixed depth (m = 0.33) added in both intervals of a forced-choice trial. The added AM was intended to disrupt cues based on FM-induced AM in the excitation pattern. Generally, the hearing-impaired subjects performed markedly more poorly than the normal-hearing subjects. For the normal-hearing subjects, the disruptive effect of the AM tended to increase with increasing modulation rate, for carrier frequencies below 6 kHz, as found previously by Moore and Sek [J. Acoust. Soc. Am. 100, 2320-2331 (1996)]. For the hearing-impaired subjects, the disruptive effective of the AM was generally larger than for the normal-hearing subjects, and the magnitude of the disruption did not consistently increase with increasing modulation rate. The results suggest that cochlear hearing impairment adversely affects both temporal and excitation pattern mechanisms of FM detection.
A psychophysical tuning curve (PTC) is usually measured by determining the level of a narrowband noise required to mask a fixed low level tone, for several masker center frequencies. PTCs could be useful clinically for assessing frequency selectivity and for the diagnosis of dead regions in the cochlea. When the signal frequency falls in a dead region, the tip of the PTC is shifted away from the signal frequency. However, PTCs determined in the traditional way are too time consuming for use in clinical practice. A fast method for determining PTCs is being developed and evaluated. This uses a band of noise that sweeps in center frequency. A Bekesy method is used to track the masker level required for threshold. For normally hearing subjects, the new method gives stable results, and PTCs similar in shape to those determined in the traditional way, when the masker sweeps over a 2-octave range in about 4 minutes, and the level changes by 1–2 dB/s. Preliminary results using hearing-impaired subjects also show a good agreement with the traditional method. However, further work is required to determine optimum values for the noise bandwidth and rate of change of frequency and level.
Two violins were investigated. The only intentionally introduced difference between them was the type of varnish. One of the instruments was covered with a spirit varnish, the other was oil varnished. Experimental modal analysis was done for unvarnished/varnished violins and a questionnaire inquiry on the instrument's sound quality was performed. The aim of both examinations was to find differences and similarities between the two instruments in the objective (modal parameters) and subjective domain (subjective evaluation of sound quality). In the modal analysis, three strongly radiating signature modes were taken into account. Varnishing did not change the sequence of mode shapes. Modal frequencies A0 and B(1+) were not changed by oil varnishing compared to the unvarnished condition. For the oil varnished instrument, the frequency of mode B(1+) was lower than that of the same mode of the spirit varnished instrument. Our two violins were not excellent instruments, but before varnishing they were practically identical. However, after varnishing it appeared that the oil-varnished violin was better than the spirit-varnished instrument. Therefore, it can be assumed with a fairly high probability that also in general, the oil-varnished violins sound somewhat better than initially identical spirit-varnished ones.
Two main aims of our investigation are to show differences in natural vibrations between two violins that differ in the thickness of the back plate and to determine whether they are linear systems. Two experiments were performed on the top and back plates. The first experiment was a mechanical modal analysis in a version with a fixed response point. In the second experiment optical measurements of the plate's velocities in modal frequencies obtained from the first experiment were performed by use of laser Doppler vibrometry. The second experiment was a simplified modal analysis experiment with a fixed excitation point. Changes in the thickness of the back plate caused changes in certain modal frequencies of both plates. However, no important differences in mode shapes were found in both experiments. Thus, violins can be treated as linear systems but with great care.
Similarities and differences in vibrational behavior of two guitars having a symmetric Torres bracing pattern and an asymmetric pattern forming a lattice on a soundboard are investigated by means of the modal analysis technique and laser Doppler vibrometry (LDV) measurements. Instruments are investigated before and after a bridge and strings assembling (i.e., they are incomplete or complete). The bracing pattern and the absence/presence of the bridge and strings have some effect on modal frequencies and mode shapes. The bracing pattern does not affect the sequence of at least first three low frequency mode shapes of incomplete/complete instruments but affects their modal frequencies. Depending on frequency, the bridge behaves either as a rigid or a flexible structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.