Purpose
To apply Failure Mode and Effects Analysis (FMEA) to optimize linac quality control (QC) protocol in order to ensure patient safety and treatment quality, taking maximum advantage of the available resources.
Material and methods
Each parameter tested by the QC was considered as a potential failure mode (FM). For each FM, likelihood of occurrence (O), severity of effect (S), and lack of detectability (D) were evaluated and corresponding Risk Priority Number (RPN) was calculated from the product of three indexes. The scores were assigned using two methods: (a) A survey submitted to the medical physicists; (b) A semi‐quantitative analysis (SQA) performed through: simulation of FMs in the treatment planning system; studies reported in literature; results obtained by the QC data analysis. A weighted RPN for all FMs was calculated taking into account both the methods. For each linac, the tests were then sorted by their frequency and the RPN value.
Results
A high variability was found in the scores of the survey, although in many it was reduced in RPN values, highlighting the more relevant tests as on beam output and imaging system. Integrating these results with those obtained by SQA, the RPN‐based ranking of tests has been provided considering the specific use of the accelerator: for example, more accurate tests on dose modulation and multileaf collimator speed were required in linacs where intensity‐modulated treatment is performed, while, more specific tests on couch and jaw position indicators were necessary where treatments with multiple isocenters and/or junctions between adjacent fields were often delivered.
Conclusions
Failure Mode and Effects Analysis is a useful tool to prioritize the linac QCs, taking into account the specific equipment and clinical practice. The integration of SQA and survey results reduces subjectivity of the FMEA scoring and allows to optimize linac QCs without “losing” the expertise and experience of medical physicists and clinical staff.
BackgroundLocal recurrences after breast conserving treatment are mainly close to the original tumor site, and as such shorter fractionation strategies focused on and nearest mammary gland, i.e. accelerated partial breast irradiation (APBI), have been developed. Stereotactic APBI has been attempted, although there is little experience using CyberKnife (CK) for early breast cancer.MethodsThis pilot study was designed to assess the feasibility of CK-APBI on 20 evaluable patients of 29 eligible, followed for 2 years. The primary endpoint was acute/sub-acute toxicity; secondary endpoints were late toxicity and the cosmetic result.ResultsMean pathological tumor size was 10.5 mm (±4.3, range 3–18), 8 of these patients were classified as LumA-like, 11 as LumB-like, and 1 as LumB-HER2-enriched.Using CK-APBI with Iris, the treatment time was approximately 60 min (range~ 35 to ~ 120). All patients received 30 Gy in five fractions delivered to the PTV. The median number of beams was 180 (IQR 107–213; range:56–325) with a median PTV isodose prescription of 86.0% (IQR 85.0–88.5; range:82–94). The median PTV was 88.1 cm3 (IQR 63.8–108.6; range:32.3–238.8). The median breast V100 and V50 was 0.6 (IQR 0.1–1.5; range:0–13) and 18.6 (IQR 13.1–21.7; range:7.5–37), respectively. The median PTV minimum dose was 26.2 Gy (IQR 24.7–27.6; range 22.3–29.3). Mild side effects were recorded during the period of observation. Cosmetic evaluations were performed by three observers from the start of radiotherapy up to 2 years. Patients’ evaluation progressively increase from 60% to 85% of excellent rating; this trend was similar to that of external observer.ConclusionsThese preliminary results showed the safe feasibility of CK-APBI in early breast cancer, with mild acute and late toxicity and very good cosmetic results.Trial registrationThe present study is registered at Clinicaltrial.gov (NCT02896322). Retrospectively egistered August 4, 2016.
The results of our study, according to the large randomized trials, confirmed that hypofractionated whole breast irradiation is safe, and only the boost administration seems to be an important predictor for toxicity. Chemotherapy does not impact on acute and late skin toxicity.
Our study results suggest that Xonrid® is well tolerated, safe, and effective in minimizing and delaying high-grade radiation dermatitis in HNC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.