Background Our previous work demonstrated the diagnostic value of Artificial Intelligence (AI) -driven algorithms for ST-Elevation Myocardial Infarction (STEMI). In the present research, we explore the importance of demographic data inclusion, in order to achieve a more accurate diagnosis. Purpose To demonstrate that incorporation of demographic variables into the sample records will augment the accuracy of AI-based protocols for STEMI diagnosis. Methods An observational, retrospective, case-control study. Demographic data (age and gender) male/female ratio 1.3, ages 98–18 years was added to the sample records. Sample: 8,511 EKG records, previously diagnosed as normal, abnormal (over 200 conditions) or STEMI. Records excluded other patient and medical information. The sample was derived from the private International Telemedical Systems (ITMS) database. LUMENGT-AI Algorithm was employed. Preprocessing: detection of QRS complexes by wavelet system, segmentation of each EKG into individual heartbeats (90,592 total beats) with fixed window of 0.4s to the left and 0.9s to the right of main QRS; Classification: A 1-D convolutional neural network was implemented, “STEMI” and “Not-STEMI” classes were considered for each heartbeat, individual probabilities were aggregated to generate the final label for each record. Training & Testing: 90% and 10% of the sample was used, respectively. Experiments: Intel PC i7 8750H processor at 2.21GHz, 16GB RAM, Windows 10 OS with Nvidia GTX 1070GPU, 8GB RAM. Results The model yielded an accuracy of 97.1%, a sensitivity of 96.8%, and a specificity of 97.5%. Conclusions The ability of AI-guided algorithms to diagnose STEMI is increased by expanding the morphological variables with demographic data. This approach may be applied to improve the EKG diagnosis of other cardiovascular entities and improve clinical management.
Background Time and accuracy are key factors that may make or break an efficient triage and management in most medical premises, particularly so when expedited diagnosis saves lives - a not so uncommon scenario in the field of cardiology. By studying the different variables involved in cardiologist-EKG interactions that lead to the identification and management of different cardiovascular entities, we delved into the applications of Artificial Intelligence (AI) algorithms in order to improve upon the classic, but dated, EKG methodology. With this study, we pit our algorithm against cardiologists to perform a thorough analysis of the time invested to diagnose an EKG as Normal, as well as an assessment of the accuracy of said label. Purpose To present a faster and reliable AI-guided EKG interpretation methodology that outperforms cardiologists' capabilities in identifying Normal EKG records. Methods The International Telemedical System (ITMS) developed and tested an EKG assessing AI algorithm and incorporated it into the workflow of their Telemedicine Integrated Platform, a digital EKG reading program where cardiologists continuously report their findings remotely in real time. During the month of April 2019; 35 ITMS cardiologists reported a grand total of 61,441 EKG records, later subjecting them to the AI algorithm, implemented through the “One Click Report” process. Through this simple 2-step approach, the algorithm provides a suggestion of “Normal” or “Abnormal” to the cardiologist based on the patterns of the fiducial points included in said EKG reports. A comparison of the time of normal EKG diagnosis is made and the correlation between AI and cardiologists is assessed. Results On average, our AI algorithm discerned a normal EKG within 30.63s (95% CI 26.51s to 34.75s), in solid contrast with cardiologists' interpretations alone, which amounted to 83.54s (95% CI from 69.43s to 97.65s). This accounts for an overall saving of 52.91s (95% CI 42.45s to 63.83s) by implementing this innovative methodology in a cardiologist practice. In addition, this method correctly reported 23,213 Normal EKG records out of the total 25,013 AI output, reaching a 92.8% correlation between man and machine. The total average time saved in normal EKG readings with AI (23,213) would accrue an approximate of 20,470 minutes (ie, 42 8-hours work shifts worth of time dedicated to diagnosing a normal EKG). Conclusions The implementation of automated AI-driven technologies into daily EKG interpretation tasks poses an attractive time-saving alternative for faster and accurate results in a modern cardiology practice. By further expanding on the concept of an intelligent EKG characterization device, a more efficient and patient-centered clinical exercise will ensue. Funding Acknowledgement Type of funding source: None
Background Our previous experience with Artificial Intelligence (AI)-conducted EKG characterization displayed outstanding results in fast and reliable identification of Normal EKGs within the International Telemedical System (ITMS)'s massive record repository. By expanding the array of recognizable cardiovascular entities, we upgraded our methodology to accurately discriminate an anomaly amongst a highly complex database of EKG records. Purpose To present a feasible AI-guided filter that can accurately discriminate and classify Normal and Abnormal EKG records within a multilabeled cardiologist-annotated EKG database. Methods ITMS developed and tested the “One Click”' process, a “Normal/Abnormal” EKG assessing AI algorithm, by incorporating it into their digital EKG reading platform where cardiologists continuously report their findings remotely in real time. To ameliorate the diagnostic range of the algorithm, a separate dataset of 121,641 12-lead EKG records was consolidated from the ITMS database from October 2011 to January 2019. Only de-identified data was used. Preprocessing: The first 2s of each short lead and 9s of the long lead were considered. Limb leads I, II and III; and precordial leads V1, V2, V3, and V5 were used. The mean was removed from each lead. AI models/Classification: Two models were created and tested independently based on the method of EKG acquisition (69,852 records transtelephonic [TTP]; 52,259 mobile transmission [MOB]). Each record is categorized into six disjoint classes based on the most common types of cardiac disorders (Low/null co-occurrence pathologies in these datasets were grouped into analogous groups). Training/Testing: Distribution of both sets per transmission type was performed through a greedy algorithm, which identified multiple diagnoses per EKG record and labeled it separately to the corresponding group, ensuring sufficient samples per class. Detailed class distribution is shown below. An inception convolutional neural network was implemented; “Normal” or “Abnormal” labels were assigned to each EKG record independently and were compared to cardiologists' reports; performance indicators were calculated for each model and group. Results MOB model accrued an average accuracy of 86.7%; sensitivity of 90.5%; and specificity of 83.9%. TTP model yielded an average accuracy of 77.2%; sensitivity of 91.1%; and specificity of 69.4% (Lower values were attributed to the “Ventricular Complexes” group, which challenged the algorithm by having a smaller ratio of abnormal exams). Detailed results of each training set are shown below. Conclusion Providing an effective and reliable multilabel-capable EKG triaging tool remains a challenging but attainable goal. Continuous systematic enhancement of our AI-driven methodology has led us to satisfactory, yet imperfect results which compel us to further study and improve our efforts to provide a trustworthy cardiologist-friendly triage device. Funding Acknowledgement Type of funding source: None
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.