Climate models and satellite observations both indicate that the total amount of water in the atmosphere will increase at a rate of 7% per kelvin of surface warming. However, the climate models predict that global precipitation will increase at a much slower rate of 1 to 3% per kelvin. A recent analysis of satellite observations does not support this prediction of a muted response of precipitation to global warming. Rather, the observations suggest that precipitation and total atmospheric water have increased at about the same rate over the past two decades.
This note is intended to serve primarily as a reference guide to users wishing to make use of the Tropical Rainfall Measuring Mission data. It covers each of the three primary rainfall instruments: the passive microwave radiometer, the precipitation radar, and the Visible and Infrared Radiometer System on board the spacecraft. Radiometric characteristics, scanning geometry, calibration procedures, and data products are described for each of these three sensors.
Satellite measurements of surface wind stress from the QuikSCAT scatterometer and sea surface temperature (SST) from the Tropical Rainfall Measuring Mission Microwave Imager are analyzed for the three-month period 21 July-20 October 1999 to investigate ocean-atmosphere coupling in the eastern tropical Pacific. Oceanic tropical instability waves (TIWs) with periods of 20-40 days and wavelengths of 1000-2000 km perturb the SST fronts that bracket both sides of the equatorial cold tongue, which is centered near 1S to the east of 130W. These perturbations are characterized by cusp-shaped features that propagate systematically westward on both sides of the equator. The space-time structures of these SST perturbations are reproduced with remarkable detail in the surface wind stress field. The wind stress divergence is shown to be linearly related to the downwind component of the SST gradient with a response on the south side of the cold tongue that is about twice that on the north side. The wind stress curl is linearly related to the crosswind component of the SST gradient with a response that is approximately half that of the wind stress divergence response to the downwind SST gradient. The perturbed SST and wind stress fields propagate synchronously westward with the TIWs. This close coupling between SST and wind stress supports the Wallace et al. hypothesis that surface winds vary in response to SST modification of atmospheric boundary layer stability.
Abstract-We provide a new fit for the microwave complex dielectric constant of water in the salinity range between 0-40 ppt using two Debye relaxation wavelengths. For pure water, the fit is based on laboratory measurements in the temperature range between 20 C and +40 C including supercooled water and for frequencies up to 500 GHz. For sea water, our fit is valid for temperatures between 2 C and +29 C and for frequencies up to at least 90 GHz. At low frequencies, our new model is a modified version of the Klein-Swift model. We compare the results of the new fit with various other models and provide a validation using an extensive analysis of brightness temperatures from the Special Sensor Microwave Imager.Index Terms-Dielectric constant of pure and sea water, microwave radiometers, ocean surface emissivity, permittivity, Special Sensor Microwave/Imager (SSM/I).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.