The present study investigates experimentally and numerically the natural convection of air in square enclosures with a localized heat source from below and symmetrical cooling from the sides. The heat source was centered on the bottom wall and the study analysed the effect of the variation in the heat source length on the natural convection inside the square cavity; the length of the heat source investigated are 1/5 and 2/5 of the wall The cooling was achieved by the two vertical walls and all the other zones were adiabatic; the symmetrical cooling from the sides is expected to be an efficient cooling option while the partial heating at the lower surface simulates the electronic components such as a chip. The experimental data are obtained by measuring the temperature distribution in the air layer by the real-time and double-exposure holographic interferometry and the numerical investigation was conducted using the commercial finite volumes code Fluent 6.0. Convection was studied for Rayleigh number from 103 to 106. Different convection forms were obtained depending on Ra and on the heat source length. The Nusselt number was evaluated on the heat source surface and it showed a symmetrical form raising near the heat source borders. Graphs with relations between average Nu, Ra and the heat source length are finally presented.
The objective of the present study is to gain some insight into fluid motion and heat transfer phenomena in the case of a square enclosure heated from below and symmetrically cooled from the sides; the effects of different values of the heat source is experimentally investigated. The localized heating is a centrally located heat source on the bottom wall; three different values of the heat source length (1/5, 2/5, 3/5 of the wall) are considered. The test cell is a square enclosure filled with air with isothermal side walls at equal temperatures Tc; the remaining vertical walls are realized with glass to allow optical access to the cavity. The top and bottom surfaces of the enclosure are made of plexiglass and, except for the heated section, are considered to be adiabatic. The located heat source is assumed to be isothermal at a temperature Th. The temperature distribution is experimentally measured by real-time and double-exposure holographic interferometry. The real-time technique is used in order to reveal the presence of plume oscillations while the double-exposure technique is used for steady-state measurements. Holographic interferometry shows the typical advantages over the classical optical techniques, such as high precision and sensitivity, very low noise level, and the possibility of displaying the temperature distribution across the whole investigated region. The objective of the heat transfer analysis is the experimental investigation of the Nusselt number distribution around the cavity at various Rayleigh numbers and several dimensions of the heat source. Different convection forms were obtained depending on Ra and on the heat source length. The Nusselt number was evaluated on the heat source surface and it showed a symmetrical form rising near the heat source borders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.