Biphosphonates are largely used for their unquestionable properties of inhibiting bone resorption by osteoclasts in the treatment of various osteometabolic illnesses such as osteoporosis, multiple myeloma, tumors which metastasize to the bone and malignant hypercalcemia. In this literature review the physico-chemical properties, biologic activities and the mechanisms of action of biphosphonates are described. The use of these drugs is discussed, analyzing the quantity of results which have emerged through in vitro and in vivo experiments on animal models. In this study the efficiency of these drugs is demonstrated in contrasting the osteolitic processes of the alveolar bone, in promoting the neoformation and in bettering the quality of bone implants. However, it is important to draw attention to a worrying correlation which has emerged during the last 3-4 years, between osteonecrosis of the jaw (ONJ) and the systemic administration of aminobiphosphonates. This collateral effect did not emerge following the use of non-aminobiphosphonates. The aim of this review is to identify the guidelines for the use of biphosphonates in oral implant surgery.
Bisphosphonates are drugs used in the treatment of a variety of osteometabolic diseases. Recently they have been the object of research and studies on their potential application in dentistry and orthopedics. In particular, clodronate (non-aminobisphosphonates) has been studied, due to its reversible activity in comparison to apoptotic osteoclasts, the intrinsic action which stimulates the differentiation and activity of the osteoblasts, their antinflammatory activity, antipain and antioxidant action, represent the rational to estimate their clinical efficacy, for local use in dentistry, implatology, orthopaedic, rheumatology, oncology and dermatology.
Objectives:The maintenance and stability of peri-implantar soft tissue seem to be related to the crestal bone around the implant platform and different implant designs connections might affect this phenomenon. The aim of this study was to evaluate by photoelastic analysis the stress distribution in the cervical and apical site of implant-abutment interface of conventional implant joints (external hex, internal hex and cone morse) and compare to the novel platform switching design. Materials and methods:It was fabricated photoelastic models using five different implant-abutment connection, one set of external hex (Alvim Ti, Neodent, Curitiba, Brazil), one set of internal hex (Full Osseotite, Biomet 3i, Florida, USA), one cone morse set (Alvim CM, Neodent, Curitiba, Brazil), and two sets of internal hex plus platform switching concept (Alvim II Plus, Neodent, Curitiba, Brazil) (Certain Prevail, Biomet 3i, Florida, USA). These models were submitted to two compressive loads, axial from 20 kgf (load I) and another (load II), inclined 45° from 10 kgf. During the qualitative analysis, digital pictures were taken from a polariscope, for each load situation. For the quantitative analyses in both situations of load, the medium, minimum and maximum in MPa values of shear strain were determined in the cervical and apical site. The Kruskal-Wallis test was used to compare the results between the different systems and between cervical and apical site were compared using Mann-Whitney U test. Results:The results from qualitative analysis showed less concentration of strain in the cervical area to the internal hex plus platform switching (Certain Prevail), in both situation of load. The same results were get in the quantitative analysis, showing less stress concentrations around the implant Certain Prevail with internal hex plus the novel design (17.9 MPa to load I and 29.5 MPa to load II), however, without statistical significant difference between the systems. Conclusion:The minor stress concentration strongly suggest the use of platform switching design as a manner to prevent bone loss around the implant-abutment platform.Clinical Significance: From the result of this study its possible to make clinical decision for implant system which provides implant components with platform switching characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.