Fires resulting from titanium combustion are complex and violent processes which can instantly burn a titanium alloy once ignited. The occurrence of titanium combustion is a disaster for aircraft. Accurate measurement of the ignition temperature of titanium alloys is of significance in preventing such fires and in investigating combustion-resistance properties. In this study, monochromatic temperature and emissivity measurement methods based on reflectivity detection were used to determine the ignition temperature of a titanium alloy. Experiments were carried out using a titanium burning apparatus. The temperatures of titanium in the oxidation stage before ignition and in the combustion stage during the ignition process were measured using wavelengths of 1050 nm and 940 nm, respectively. Experimental results showed that the ignition temperature of the titanium alloy could be measured by reflectivity detection and that measurement precision during thermal oxidation (500-900 °C) was ±1 °C. The temperature of the ignition process ranged between 1653 and 1857 °C, and the ignition temperature was around 1680 °C.
This paper proposes a way of generating polariton solitons (PSs) in a semiconductor microcavity using Stark effect as the trigger mechanism. A Stark pulse performing as the writing beam is used to excite non-resonant fluctuations of polariton, which finally evolves into bright PSs. It is found that a branch of PS solutions versus pump parameters could be found through optimizing parameters of the Stark pulse, and polarization of the generated PS is dependent on the writing beam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.